▎基本信息
| n 职称:教授(博士生导师) |
n 职务:副院长(本科教学、国际交流) | |
n 人才称号:海外高层次人才引进计划青年项目入选者(第十五批) | |
n 联系电话:020-87110061 | |
n 电子邮箱:nanhu026@scut.edu.cn | |
n 办公地址:交通大楼311/7号楼7101-1 |
▎研究方向
(1) 材料强韧共生机制与功能协同设计; (2) 力学超材料与模块化复合材料结构; (3) 复杂结构的增减材设计建造一体化; |
▎学术兼职
中国土木工程学会教育工作委员会委员 中国土木工程学会先进工程材料分会理事 ASCE结构工程分会装配式模块化结构、仿生结构、结构美学专委会委员 ASCE工程力学分会结构稳定、建构化材料专委会委员 《Journal of Intelligent Construction》青年编委 Science, Nature等40余个国际权威SCI期刊特约审稿人 美国科学促进会(AAAS)、美国土木工程师协会(ASCE)、美国机械工程师协会(ASME)、世界桥梁工程师协会(IABSS)、世界壳结构工程师协会(IASS)、世界仿生工程协会(IEBE)等多个学术组织的会员 |
▎招生专业
博士生:学术型博士(结构工程/桥梁与隧道工程)、专业型博士 硕士生:学术硕士(土木工程) 专业学位硕士:专业硕士(土木水利) |
▎教育与工作经历
教育经历 2011年8月~2015年8月,美国密歇根州立大学(Michigan State University),土木工程专业,博士 2011年8月~2014年5月,美国密歇根州立大学(Michigan State University),工程力学专业,硕士 2007年9月~2010年5月,中南大学,桥梁与隧道工程专业,硕士 2003年9月~2007年6月,湖南大学,土木工程专业,学士 工作经历 2020年4月至今,华南理工大学,土木与交通学院,土木工程系,教授 2022年12月~2023年12月,华南理工大学,土木工程系主任 2022年6月~2023年6月,华南理工大学,教务处副处长(挂职),分管教师发展和教学计划 2017年9月~2019年12月,美国俄亥俄州立大学(The Ohio State University),土木、环境与大地测量系,tenure-track助理教授 2015年8月~2017年6月,美国达特茅斯学院(Dartmouth College,常春藤盟校之一),Thayer工程学院,副研究员 |
▎教学与科研情况
介绍内容及顺序如下: ² 教学 本科生教学: 1. 全英课程《材料力学》、《理论力学》、《工程结构智能建造》、《土木工程概论》、《结构智能化设计工作坊》、《结构找型与概念设计》和《建构化材料概论》等。学校《结构艺术赏析》通选课课程; 2. 曾指导互联网+、挑战杯、全国大学生结构设计竞赛、国际大学生混凝土龙舟邀请赛、全国大学生工业化建筑与智慧建造竞赛、“茅以升公益桥—小桥工程”创新设计大赛、冰雪结构国际邀请赛等20余项比赛并获奖; 3. 作为负责人,主持2023年广东省本科高等学校教学质量与教学改革工程项目“智能建造专业建设与人才培养计划”、2021年华南理工大学未来创新实验室项目“数字化设计与智能建造”; 4. 曾获华南理工大学本科课堂教学竞赛特等奖、卓越联盟教学创新大赛三等奖、华南理工大学主题微党课比赛第一名;作为参与人获批2023年度国家级高等教育(本科)教学成果奖二等奖(排名第10) 研究生教学: 1. 讲授《3D打印材料与结构》、《现代桥梁结构原理》课程,年均招收硕士生3名,博士生1名。 2. 作为负责人,主持2022年广东省研究生教育创新计划—联合培养示范基地; 负责人 ² 科研 科研兴趣:新材料与高性能结构、可适应功能结构、低碳与再生材料结构、数据驱动下的材料结构设计、机械臂辅助建造与打印、桥梁工程、结构屈曲、结构力学、结构概念设计、结构仿生、结构艺术。 科研项目:胡楠教授一直从事新材料结构设计、分析与力学相关研究,自2017年从教以来,先后主持国家自然科学基金青年项目在内6项。目前已在Nature Communications, PNAS, Matter, npj computational materials上参与发表SCI期刊论文70余篇(3篇高被引,3篇选为杂志封面,1篇选为封底,1篇选为创刊25年十佳综述文章)、会议论文25篇、书章节2篇、发明专利15件,应邀在国际学术会议上作报告十余次。谷歌引用2000+,H-index 20。 代表性成果: 30. Yao, X., Liu, K., Dong, Q., Li, X., Ma, C., & Hu, N. (2024), Tunable and recoverable energy absorption of foam-embedded architected cellular composite material at multiple strain rates, Composites Structures, 329, 117745. 29. Peng, S., Xie, B., Wang, Y. L., Wang, M., Chen, X., Ji, X., Zhao, C., Lu, G., Wang, D., Hao, R., Wang, M., Hu, N., He, H., Ding, Y., & Zheng, S. (2023), Low-grade wind driven directional flow in anchored droplets. The Proceedings of the National Academy of Sciences (PNAS), 120(38), e2303466120. 28. Yu, C., Xie, B., Yao, X., Hu, N., Guo, J., Jiang X., Smith, A., & Sun, L. (2023). Cabbage-like flexible fluororubber/carbon aerogel hybrids with negative Poisson’s ratios and excellent microwave absorption, Matter. 12(6), 4321-4338. 27. Huang, Z., Chen, Z., Xie, G., Hua, Y., Zhu, L., & Hu, N. (2023), Implementation of parametric modeling to design Miura origami-inspired canopy toward adaptive urban habitat. Architecture, Structures, and Construction. 26. Chen, M., Yao, X., Zhu, L., Yin, M., Xiong, Y., & Hu, N. (2023), Geometric design and performance of single and dual-printed lattice-reinforced cementitious composite, Cement and Concrete Composites, 143, 105266. 25. Xie, B., Li, X., Zhao, X., & Hu, N. (2023). Architected lattice-reinforced cementitious composite: from versatile local designs to tunable global behaviors, Composite Structures, 312,116850 24. Ye, X., Cao, Y., Liu, A., Wang, X., Zhao, Y., & Hu, N. (2023), Parallel convolutional neural network toward high-efficient and robust structural damage identification, Structural Health Monitoring, 22(6):3805-3826 23. Li, Z., Xie, C., Li, F., Wu, D., & Hu, N. (2023). Heterogeneous geometric designs in auxetic composites toward enhanced mechanical properties under complex loading, Composites Communications, 38, 101499. 22. Yao, X., Chen, M., Zhao, J., Zhang. Y. & Hu, N. (2022), Tailoring plastic deformation of metallic architected materials toward multi-stage energy dissipations, Materials & Design, 223, 111262. 21. Xie, B., Yao, X., Mao, W., Rafiei, M. & Hu, N. (2022), Harnessing domain-knowledge-guided self-supervised learning to characterize properties of concrete, Computational Material Sciences, 216, 111834. 20. Liu, P., Mao, W., Yin, Y., Gan, Z., Zhao, D. & Hu, N. (2022), Jigsaw-Inspired Modular Architected Materials with Tailorable Stiffness and Programmable Reconfiguration for Adaptive Flow Regulations. Advanced Engineering Materials, 2200148. 19. Zhang, Z., Luce, B., Ma, C., Xie, B., & Hu, N. (2020). Programmable Origami-inspired Cellular Architected Building Blocks for Adaptive Flow Regulating Mechanism. Extreme Mechanics Letters, 40, 100974. 18. Zhang, Z., Pusateri, S., Xie, B., Hu, N. (2020). Tunable Energy Trapping through Contact-induced Snap-through Buckling in Strips with Programmable Imperfections, Extreme Mechanics Letters, 37, 100732. 17. Ma, C., Zhang, Z., Luce, B., Pusateri, S., Xie, B., Rafiei, M., & Hu, N. (2020). Accelerated design and characterization of non-uniform cellular materials via a machine-learning based framework, npj Computational Materials, 6:40, 1-8. 16. Zhao, Y., Maria Joseph. A., Zhang. Z., Ma, C., Gul, D., Schellenberg, A., Hu, N. (2020). Deterministic snap-through buckling and energy trapping in axially-loaded notched strips for compliant building blocks, Smart Materials and Structures, 29:02LT3 15. Ma, C., Zhang, D., Zhang, Z., Zhang, H., Gul, D., Schellenberg, A., Feng, P., & Hu, N. (2019). Exploiting spatial heterogeneity and response characterization in non-uniform architected materials inspired by slime mould growth, Bioinspiration & Biomimetics, 14, 064001. 14. Miao, W., Yao, Y., Zhang, Z., Ma, C., Li, S., Tang, J., Liu, H., Liu, Z., Wang, D., Zheng, S., Hu, N., & Wang, X. (2019). Micro-/Nano-Voids Guided Two-Stage Film Cracking on Bioinspired Assemblies for High-Performance Electronics. Nature Communications, 10: 3862. 13. Hu, N, Chen, D., Wang, D., Huang, S., Trase, I, Grover, H., Yu, X., Zhang, X.J., & Chen, Z. (2018). Stretchable kirigami polyvinylidene difluoride thin films for energy harvesting: Design, analysis, and performance, Physical Review Applied, 9, 021002. 12. Yan, B., Ma, C., Zhao, Y., Hu, N., & Guo, L. (2019). Geometrically Enabled Soft Electroactuators via Laser Cutting, Advanced Engineering Materials, 1900664. (Featured on cover) 11.Hu, N., Han, X., Huang, S, Grover, H.M., Yu, X., Zhang. L., Trase, I., Zhang, X.J., Zhang. L., Dong, L.X. & Chen, Z. (2017). Edge Effect of Strained Bilayer Nanofilms for Tunable Multistability and Actuation. Nanoscale, 9, 2958-2962. 10. Hu, N., & Burgueño, R. (2016). Harnessing seeded geometric imperfection to design cylindrical shells with tunable elastic postbuckling behavior. Journal of Applied Mechanics. 84(1), 011003. 9. Hu, N., Burgueño, R., Haider, & S.W. Sun, Y. (2016). An approach for estimating bridge deck chloride-induced degradation from local modeling to global asset assessment, ASCE Journal of Bridge Engineering, 21(9), 06016005. 8. Hu, N., & Burgueño, R. (2015). Tailoring of the elastic postbuckling response of cylindrical shells: a route for exploiting instabilities in materials and mechanical systems. Extreme Mechanics Letters, 4, 103-110. 7. Hu, N., & Burgueño, R. (2015). Elastic postbuckling behavior of cylindrical shells with seeded geometric imperfection design. Thin-Walled Structures, 96, 256-268. 6. Hu, N., & Burgueño, R. (2015). Buckling-induced smart applications: recent advances and trends. Smart Materials and Structures, 24(6), 063001. 5. Yan, B, Dai, G. L., & Hu, N. (2015). Recent development of design and construction of short-span high-speed rail bridges in China. Engineering Structures, 100, 707-717. 4. Burgueño, R., Hu, N, Heeringa, A, & Lajnef, N. (2014). Tailoring the elastic postbuckling response of thin-walled cylindrical shell under axial compression. Thin-Walled Structures, 84, 14-25. 3. Hu, N., Feng, P., & Dai, G. L. (2014). Structural art: past, present and future. Engineering Structures, 79, 407-416. 2. Hu, N., Dai, G. L., Yan, B. & Liu, K. (2014). Recent development of design and construction of medium and long span high-speed railway bridges in China. Engineering Structures, 74, 233-41. 1. Hu, N., Feng, P., & Dai, G. L. (2013). The gift from nature: bio-inspired strategy for developing innovative bridges. Journal of Bionic Engineering, 10(4), 405-414.
|
▎其他
胡楠教授所指导的“多样化结构实验室”(Versatile Structures Lab) 聚焦基于数字化设计和智能建造的新材料结构与新功能结构的开发,致力于拓展结构在几何可变化、属性可定制、功能可调节等方面的研究工作,推进结构设计在多尺度多学科多应用场景的学科边界。详情请参加主页:https://www.x-mol.com/groups/vsl 课题组长期招收具有土木、力学、材料及机械等相关专业博士毕业生加盟课题组开展博士后科研工作。优先考虑具有计算力学、固体力学、计算力学、机器学习、智能建造、智能器件、拓扑优化、3D打印和新功能材料等研究背景的申请人。若有意向,请发简历及两篇代表性成果至胡教授邮箱nanhu026@scut.edu.cn取得联系。依托于粤港澳大湾区的政策导向和经济优势,华南理工大学为博士后提供丰厚的待遇和配套条件,具体招聘启示请参见:https://www2.scut.edu.cn/postdoctor/2021/1102/c13590a449561/page.htm 博士及硕士研究生招生:优先考虑力学背景扎实,编程能力出色,动手能力过人,英语表达出众,或综合组织能力突出的申请者。 本科科研助理招募:课题组诚邀对结构设计,分析和力学有浓厚兴趣的本科生加入课题组完成助研项目和本科生创新项目等,请发简历至胡教授邮箱nanhu026@scut.edu.cn 取得联系。
|
课题组主页:https://www.x-mol.com/groups/vsl
B站平台:https://space.bilibili.com/2040235889
ORCID: http://orcid.org/0000-0003-3536-8414
ResearchGate: https://www.researchgate.net/profile/Nan_Hu11
Google Scholar: http://scholar.google.com/citations?user=zCPL0F0AAAAJ&hl=en