▎基本信息
n 职称:副教授 | |
n 联系电话: 020-87111030-3304 | |
n 电子邮箱:byang20210415@scut.edu.cn | |
n 办公地址:华南理工大学交通大楼304室 |
▎研究方向
材料动态力-电机理、柔性传感技术、力学与智能可穿戴设备、运动生物力学以及它们在运动与康复 医疗领域的应用 |
▎学术兼职
广东省力学学会生物力学专委会委员 广东省力学学会爆炸力学与工程爆破专委会委员 广东省生物医学工程学会生物力学专委会委员 |
▎招生专业
博士生: 力学 硕士生: 力学 专业学位硕士:水利水电 |
▎教育与工作经历
教育经历 2007年9月~2012年12月,华南理工大学,固体力学,博士(导师:汤立群 教授) 2003年9月~2007年6月,华南理工大学,工程力学,学士 工作经历 2021年6月至今,华南理工大学,土木与交通学院,副教授 2020年6月~2021年5月,香港理工大学,制衣与服装学系&智能可穿戴研究中心,研究员,合作教授:陶肖明教授 2013年12月~2020年6月,香港理工大学,制衣与服装学系&智能可穿戴研究中心,副研究员,合作教授:陶肖明教授 2013年6月~2013年12月,香港理工大学,制衣与服装学系&智能可穿戴研究中心,博士后研究员,合作教授:陶肖明教授 |
▎教学与科研情况
² 教学 本科生教学:1.主讲《弹性力学》、《理论力学》和《航空航天概论及力学应用》等本科生课程。 2. 指导学生完成多项国家大学生创新计划项目,如:2021年创新训练项目(国家级)——可穿戴式摩擦电/压电混合发电装置的发电规律研究,2022年创新训练项目(国家级)——基于柔性传感器的可穿戴呼吸监测系统,2023年百步梯攀登计划项目——一种可监测患者骨折处温度的柔性外固定。 研究生教学:年均招收硕士生1-2名,博士生1-2名。 ² 科研 科研兴趣: 主要研究方向为材料动态力-电机理、柔性传感技术、智能可穿戴设备、运动生物力学以及它们在运动与康复医疗领域的应用。 科研项目: 1.国家自然科学基金面上项目,石墨炔基柔性电化学驱动器的制备、介观调控及换能特性研究,21975217,2020.01 - 2023.12,65万,在研,参与 2.国家自然科学基金重点专项,溶液环境中高含水率超软材料动态性能的实验技术与表征方法,2018YFC2000904,2019.01-2023.12,367.65万,在研,参与 3.企业单位委托项目,基于深度学习的地基溶洞探测技术研究,48万,2022-2023,在研,负责人 4.华南理工大学人才队伍建设经费-杨宝,40万, 2021.06 - 2027.05,在研,负责人 5.国家重点研发计划,主动健康和人口老龄化科技应对,多源信息融合的心肺功能评测康复关键技术及有效集成研究,2022YFC3601000,2022.12 - 2025.12,在研,研究骨干(课题二华南理工大学负责人) 6.中国香港创新及科技基金,Trial:Intelligent Wearable System for Enhancing Mobility of People with Parkinson’s Disease (Easypacer) 应用智能可穿戴系统(颐步)改善帕金森症患者活动能力, ITT/023/18TP,2019.03 - 2020.12,330万港币,结题,研究骨干 7.中国香港创新及科技基金,Fabric Sensors for Three-Dimensional Surface Pressure Mapping织物传感器测量三维压力分布,ITT/035/14TP. K-ZRJG,2016.04 –2016.09,803万港币,结题,参与 8.中国香港创新及科技基金,Key Technologies of Customized Intelligent Medical Pressure Clothing 智能医用压力服装量身定制关键技术,ITP/041/19TP,2020.03 -2022.09,866.7万港币,结题,研究骨干 9.中国香港大学教育资助委员会,Hybridization of textile-based Piezoelectric and Triboelectric Nanogenerators 织物基杂化摩擦电-压电纳米发电机,15200917,2018.01 - 2020.12,87.5万港币,结题,参与 10.中国香港大学教育资助委员会,Multi-scaled study of Triboelectric Effects in Textile Structures多尺度研究织物结构摩擦电效应, 15211016,2017.01 - 2019.12,67.5万港币,结题,研究骨干 11.中国香港大学教育资助委员会,Structures and Transport Properties Thermoelectric Textile Composite 热电织物复合材料的结构和传输性能15204715,2015.01 - 2019.04,49.6万港币,结题,参与 12.中国香港理工大学研究基金,Textile Based Energy Harvesting and Storage Systems-an Exploratory Study 织物基能源收集及存储系统研究,1-BBA3,2016.01 - 2018.12,25万港币,结题,研究骨干 13.中国香港创新及科技基金,Novel Bio-based Anti-bacteria Textile for Healthcare Application 新型生物基抗菌纺织品的健康护理应用技术, ITP/039/16TP,2016.10-2018.10,1054万港币,结题,研究骨干 14.中国香港大学教育资助委员会,Tribological Study of Textile-based Wearable Electronic Devices,15215214,2014.12-2018.12,87.5万港币,结题,参与 15.中国香港创新及科技基金,Manufacturing Technologies for Green Textiles with High Added Values 高附加值绿色纤维的制备加工技术, ITP/050/13,2014.03-2016.03,618万港币,结题,参与 16.中国香港大学教育资助委员会,Study of Fiber-based Wearable Electric Power Generators 纤维基可穿戴式发电装置,525113,2013.12 - 2017.06,83.6万港币,结题,参与 17.国家自然科学基金委员会及研究资助局联合科研资助基金,The Key Technologies of Deformable Bionic Search Robots with Electric Fabric Skin电子织物皮肤的可变形仿生搜救机器人关键技术研究,N-PolyU503/12,2013.01 - 2016.12, 102.8万港币,结题,参与 18.中国香港创新及科技基金项目,举重运动员中的运动生理信号和机械信号智能监测系统,ITT/011/11TT,203万港币,结题,参与 代表性成果(论文、专利或专著、软件著作权、成果转化等) |
2023年 Chengbin Chen, Liqun Tang, Yonghui Lu, Yong Wang, Zejia Liu, Yiping Liu and Licheng Zhou*, Zhenyu Jiang, Bao Yang,2023,Reconstruction of long-term strain data for structural health monitoring with a hybrid deep-learning and autoregressive model considering thermal effects.Engineering Structures, ,285:116063. (IF = 5.582, Q1) https://doi.org/10.1016/j.engstruct.2023.116063 Yonghui Lu, Liqun Tang, Chengbin Chen, Licheng Zhou*, Zejia Liu, Yiping Liu, Zhenyu Jiang, Bao Yang, 2023,Reconstruction of structural long-term acceleration response based on BiLSTM networks.Engineering Structures, 285:116000.(IF = 5.582, Q1) https://doi.org/10.1016/j.engstruct.2023.116000 Chengbin Chen, Liqun Tang, Yonghui Lu, Licheng Zhou*, Zejia Liu, Yiping Liu, Zhenyu Jiang, Bao Yang,2023, Temperature-induced response reconstruction method based on DL-AR model and attention mechanism. Structures, 50: 356-372. (IF = 4.010, Q2) https://doi.org/10.1016/j.istruc.2023.02.044 周颖,刘泽佳,张舸,周立成,刘逸平,汤立群,蒋震宇,杨宝,2023,基于移动主成分分析与集成学习的结构损伤识别方法,济南大学学报(自然科学版),01:1671-3559. https://doi.org/10.13349/j.cnki.jdxbn.20221103.002 Yibing Xie, Zihao Wang, Xiaoyue Ren, Maxwell Fordjour Antwi-Afari, Yameng Wang, Hao-Yang Mi*, Bao Yang*, Chuntai Liu*, Changyu Shen,2023, An internal electrode strategy for enhancing the stability and durability of triboelectric nanogenerator. Composites Science and Technology. 237:110014. (IF = 9.879, Q1) https://doi.org/10.1016/j.compscitech.2023.110014 Jun Li, Ying Xiong, Kitming Ma, Bao Yang, Linlin Ma, Xiaoming Tao*, 2023, Asymmetric strategy for enhanced performance of flexible electroadhesive clutch.Heliyon, 9(2): e12938.(IF = 3.776, Q2) https://doi.org/10.1016/j.heliyon.2023.e12938 Jingyu Wang, Yongrou Zhang, Zhenyu Jiang, Licheng Zhou*, Zejia Liu, Yiping Liu, Bao Yang, and Liqun Tang*,2023, Mechanical behavior and constitutive equations of porcine brain tissue considering both solution environment effect and strain rate effect. Mechanics of Advanced Materials and Structures, 1-15. (IF = 3.338, Q2) https://doi.org/10.1080/15376494.2022.2150917 Xiaoyang Zhang, Liqun Tang*, Bao Yang, Heping Hu, Shifeng Tan, 2023, Study on the effect of the size irregularity gradient of metal foams on macroscopic compressive properties.Heliyon, 8(12): e12531. (IF = 3.776, Q2) https://doi.org/10.1016/j.heliyon.2022.e12531 Kai He, Huanchen Liao, Zejia Liu, Yiping Liu, Liqun Tang, Bao Yang, Licheng Zhou*, Zhenyu Jiang*,2023, Reinforcing efficiency of nanophases with various geometric shapes on interfacial bonding in multiscale composites. Composites Part A-APPLIED SCIENCE AND MANUFACTURING ,165:107369.(IF = 9.463, Q1) https://doi.org/10.1016/j.compositesa.2022.107369 2022年 Chang Peng, Chang Liu, Zhenhao Liao, Bao Yang, Liqun Tang, Lei Yang*, Zhenyu Jiang*. 2023, Automatic 3D image based finite element modelling for metallic foams and accuracy verification of digital volume correlation. International Journal of Mechanical Sciences, 2022, 235: 107715. (IF =6.772, Q1) https://doi.org/10.1016/j.ijmecsci.2022. 107715 Shuping Lin, Lisha Zhang, Wei Zeng, Dongliang Shi, Su Liu, Xujiao Ding, Bao Yang, Jin Liu, Kwok-ho Lam, Baolin Huang, Xiaoming Tao*. 2022, Flexible thermoelectric generator with high Seebeck coefficients made from polymer composites and heat-sink fabrics. Communications Materials, 3(1): 1-13. (Q1) https://doi.org/10.1038/s43246-022-00263-1 Bao Yang, Ying Li, Fei Wang, Stephanie Auyeung, Manyui Leung, Margaret Mak, Xiaoming Tao*. 2022, Intelligent wearable system with accurate detection of abnormal gait and timely cueing for mobility enhancement of people with Parkinson’s disease. Wearable Technologies, 3, E12. https://doi.org/10.1017/wtc.2022.9 Haiyan Fu, Jianliang Gong*, Hao Zhong, Bao Yang, Zuchang Long, Jiqing Zeng, Zhiyu Cheng, Jialin He, Bingang Xu and Yiwang Chen*. 2022, Surface microstructural engineering of silicone elastomers for high performance adhesive surface-enabled mechanical energy harvesters. Journal of Materials Chemistry A, 10(17): 9643-9654. (IF =14.511, Q1) https://doi.org/10.1039/D2TA00343K 2021年 Su Liu, Kitming Ma, Bao Yang, Heng Li, Xiaoming Tao*. 2021.Textile Electronics for VR/AR Applications. Advanced Functional Materials, 2007254 (IF = 16.836, Q1) https://doi.org/10.1002/adfm.202007254 陶肖明,刘苏,杨宝,张莉莎,马洁明,舒琳和王飞. 织物电子器件及系统的发展现状、科学问题、核心技术和应用展望,科学通报,2021, 66(24): 3071-3087. Xiaoming Tao*, Su Liu, Bao Yang, Lisha Zhang, Kitming Ma, Lin Shu, Fei Wang. 2021, Recent advances, scientific issues, key technologies and perspective of textile electronics. Chinese Science Bulletin, 66(24): 3071 – 3087. (Q3) https://doi.org/10.1360/TB-2020-1402 Su Yang,Su Liu, Xujiao Ding, Bo Zhu, Jidong Shi, Bao Yang, Shirui Liu Wei Chen, Xiaoming Tao*. 2021. Permeable and washable electronics based on polyamide fibrous membrane for wearable applications. Composites Science and Technology, 207:108729 (IF = 7.094, Q1) https://doi.org/10.1016/j.compscitech.2021.108729 Xi Wang#, Bao Yang#, Qiao Li, Fei Wang, Xiaoming Tao. 2021. Modeling the stress and resistance relaxation of conductive composites-coated fabric strain sensors. Composites Science and Technology, 204:108645. (IF = 7.094, Q1, Co-first author) https://doi.org/10.1016/j.compscitech.2021.108645 2020年 Bao Yang, Ying Xiong, Kitming Ma, and Xiaoming Tao*. 2020. Recent advances in wearable textile‐based triboelectric generator systems for energy harvesting from human motion. EcoMat. 2(4): e12054 (IF = 12.213, Q1) https://doi.org/10.1002/eom2.12054 Lisha Zhang, Bao Yang, Shuping Lin, Tao Hua, Xiaoming Tao*. 2020, Predicting performance of fiber thermoelectric generator arrays in wearable electronic applications. Nano Energy, 76:105117. (IF = 15.584, Q1) https://doi.org/10.1016/j.nanoen.2020.105117 Rong Yin#, Bao Yang#, Xunjiao Ding, Su Liu, Wei Zeng, Jun Li, Su Yang, and Xiaoming Tao*. 2020. Wireless Multistimulus‐Responsive Fabric‐Based Actuators for Soft Robotic, Human–Machine Interactive, and Wearable Applications, Advanced Materials Technologies, 5(8): 2000341. (IF = 5.969, Q1, Co-first author) https://doi.org/10.1002/admt.202000341 Xi Wang, Bao Yang, Li Qiao, Xia Guo, and Xiaoming Tao*. 2020. Parametric Modeling the Human Calves for Evaluation and Design of Medical Compression Stockings. Computer Methods and Programs in Biomedicine, 194: 105515. (IF = 3.424, Q1) https://doi.org/10.1016/j.cmpb.2020.105515 Jianliang Gong, Bingang Xu*, Yujue Yang, Mengjie Wu, Bao Yang. 2020. An Adhesive Surface Enables High-Performance Mechanical Energy Harvesting with Unique Frequency-Insensitive and Pressure-Enhanced Output Characteristics, Advanced Materials, 32(14): 1907948. (IF = 27.398, Q1) https://doi.org/10.1002/adma.201907948 Bao Yang#, Xi Wang#, Ying Xiong, Shirui Liu, Xia Guo, and Xiaoming Tao*. 2020. Smart Bionic Morphing Leg Mannequin for Pressure Assessment of Compression Garment, Smart Materials and Structures, 29(5): 055041. (IF = 3.613, Q1) https://doi.org/10.1088/1361-665X/ab7856 2019年 Jidong Shi, Su Liu, Lisha Zhang, Bao Yang, Lin Shu, Ying Yang, Ming Ren, Yang Wang, Jiewei Chen, Weu Chen*, Yang Chai*, Xiaoming Tao*. 2019. Smart Textile‐Integrated Microelectronic Systems for Wearable Applications, Advanced Materials,32(5):1901958. (IF = 27.398, Q1) https://doi.org/10.1002/adma.201901958 Bao Yang, Su Liu, Xi Wang, Rong Yin, Ying Xiong, and Xiaoming Tao*. 2019. Highly Sensitive and Durable Structured Fibre Sensors for Low-Pressure Measurement in Smart Skin. Sensors, 19(8): 1811. (IF = 3.275, Q1) https://doi.org/10.3390/s19081811 Bao Yang, Xiaoming Tao*, and Zehua Peng. 2019. Upper limits for output performance of contact-mode triboelectric nanogenerator systems, Nano Energy, 57:66-73. (IF = 16.602, Q1) https://doi.org/10.1016/j.nanoen.2018.12.013 2018年以前 Shirui Liu, Wei Zheng, Bao Yang, and Xiaoming Tao*. 2018. Triboelectric charge density of porous and deformable fabrics made from polymer fibers. Nano Energy, 53: 383-390, (IF = 16.602, Q1) https://doi.org/10.1016/j.nanoen.2018.08.071 Jian Song, Bao Yang, Wei Zeng, Zehua Peng, Shuping Lin, Jun Li and Xiaoming Tao*. 2018. Highly Flexible, Large-Area and Facile Textile-Based Hybrid Nanogenerator with Cascaded Piezoelectric and Triboelectric Units for Mechanical Energy Harvesting, Advanced Materials Technologies, 3(6):1800016. (IF = 5.969, Q1) https://doi.org/10.1002/admt.201800016 Song Chen, Xiaoming Tao*, Wei Zeng, Bao Yang, and Songmin Shang. 2017. Quantifying Energy Harvested from Contact-Mode Hybrid Nanogenerators with Cascaded Piezoelectric and Triboelectric Units, Advanced Energy Materials, 7(5): 1601569, P.1-9. (IF = 25.245, Q1) https://doi.org/10.1002/aenm.201601569 Xi Wang, Xiaoming Tao*, RCH So, Lin Shu, Bao Yang, and Ying Li. 2016. Monitoring Elbow Isometric Contraction by Novel Wearable Fabric Sensing Device, Smart Materials and Structures, 25(12):125022. (IF = 3.613, Q1) https://doi.org/10.1088/0964-1726/25/12/125022 Bao Yang, Wei Zeng, Zehua Peng, Shirui Liu, Ke Chen, and Xiaoming Tao*.2016. A Fully Verified Theoretical Analysis of Contact-Mode Triboelectric Nanogenerators as a Wearable Power Source, Advanced Energy Materials, 6(16):1600505. (IF = 25.245, Q1) https://doi.org/10.1002/aenm.201600505 Bao Yang, Zejia Liu, Liqun Tang, Zhenyu Jiang and Yiping Liu*, 2015. Mechanism of the Strain Rate Effect of Metal Foams with Numerical Simulations of 3D Voronoi Foams during the Split Hopkinson Pressure Bar Tests, International Journal of Computational Methods, 12(04):1540010. (IF = 1.716, Q3) https://doi.org/10.1142/S0219876215400101 Bao Yang, Liqun Tang*, Yiping Liu, Zejia Liu, Zhenyu Jiang and Daining Fang. 2014. The Deformation Measurement and Analysis on Meso-Structure of Aluminium Foams during SHPB Tests, Journal of Testing and Evaluation, 42(3):621-628. (IF =0.877, Q4) https://doi.org/10.1520/JTE20120254 Bao Yang, Liqun Tang*, Yiping Liu, Zejia Liu, Zhenyu Jiang and Daining Fang, 2013. Localized Deformation in Aluminium Foam during Middle Speed Hopkinson Bar Impact Tests, Materials Science and Engineering A, 560:734-743. (IF = 3.414, Q2) https://doi.org/10.1016/j.msea.2012.10.027 Chunyu Zhang, Liqun Tang, Bao Yang, Lue Zhang, Xiaoqing Huang, and Daining Fang, 2013. Meso-mechanical study of collapse and fracture behaviors of closed-cell Metallic foams, Computational Materials Science, 79:45-51. (IF = 2.863, Q2) https://doi.org/10.1016/j.commatsci.2013.05.046 习会峰, 刘逸平, 汤力群, 刘泽佳, 穆建春, 杨宝, 2013, 考虑温度效应的泡沫铝准静态压缩本构模型, 哈尔滨工程大学学报, 34(8):1-6. (EI) https://doi.org/10.3969/j.issn.1006-7043.201211022 杨宝,汤立群*,刘逸平,刘泽佳,黄小清,张纯禹和魏志强,2012.冲击条件下泡沫铝的细观变形特征分析, 爆炸与冲击, 32(4): 399-403. (EI) https://doi.org/10.11883/1001-1455(2012)04-0399-05 魏志强, 黄小清, 杨宝, 汤立群, 和郁伟, 2011, 应用高速摄影机对泡沫铝在SHPB实验过程的变形跟踪与分析, 实验力学, 26:1-7. (EI) http://doi.org/1001-4888(2011)02-0117-07 Zhiqiang Wei, Xiaoqing Huang, Bao Yang, Liqun Tang, Yuwei He. 2011, Tracking and Analysis of Aluminum Foam Deformations in SHPB Experiment by Using High-speed Camera[J]. Journal of Experimental Mechanics, 26(2): 117-123. http://doi.org/1001-4888(2011)02-0117-07 Lohan Peng*, Huiliang Zhang, Bao Yang, Liqun Tang, Philip Hemmer, Hong Liang, 2010. Stress-Induced Nanostructures through Laser-Assisted Scanning Probe Nanolithography, The Journal of Scanning Microscopies, 32 (5): 327-335. (IF = 1.330, Q3) https://doi.org/10.1002/sca.20198 刘泽佳, 李保木, 杨宝, 汤立群. 2008, 在役桥梁中混凝土材料的徐变监测与分析. 中山大学学报(自然科学版),S2: 5-8. (Zejia Liu, Baomu Li, BaoYang, Liqun Tang. 2008, The monitoring and analysis on the concrete creep behaviours of a serviced bridge. Acta Scientiarum Naturalium Universitatis Sunyatseni, 47(SUPPL. 2) :5-8.)
专利 1. Bionic leg mannequins and fabrication method, Chinese invention patent and PCT application. 2019, 201910139406.0.(排名第二) 2. INTELLIGENT BIONIC HUMAN BODY PART MODEL DETECTION DEVICE AND METHOD FOR MANUFACTURING SAME, United States Patent Application Publication, US 2021/0010877 A1(排名第二) 3.基于眼压计压头受力的判定压头达到压平的方法,发明专利,申请号:202111421869X (排名第七) 4. 基于眼压计压头受力的判定压头达到压平的方法,PCT或外国专利,申请号:PCT/CN2022/082984 (排名第七) 5. 基于真实眼球环境的仿生眼球结构及其测试系统,发明专利,申请号:2022110512782(排名第七) 6. 埋入式双层封装光纤光栅传感器,实用新型,申请号:2012201099932(排名第九) 7. 埋入式双层封装光纤光栅传感器及其制作方法,发明专利,申请号:2012100771611(排名第九) 8. 制作实物仿脑模型的透明SA-DN-NP复合凝胶材料的制备方法,发明专利,申请号:2022106284016(排名第九) 9. 光纤传感器及摩擦系数的测量方法,发明专利,申请号:202211491815.5 (Fiber Optic Sensor and Method for Measurement of Friction Coefficient)(排名第三) |
▎其他
杨宝,男,汉族,广东人,中共党员。2007年毕业于华南理工大学工程力学,获工学学士学位;2012年毕业于华南理工大学固体力学专业,获工学博士学位(获校优秀博士论文奖,导师:汤立群教授)。2013年至2021年,香港理工大学纺织与服装学系及智能可穿戴中心工作,担任博士后研究员/副研究员/研究员(导师:国际纺织学会荣誉院士、获美国纤维学会最高个人奠基者奖和第十三届光华工程科技奖等获得者——陶肖明教授);2021年6月通过海外人才引进计划入职华南理工大学土木与交通学院工程力学系。现任华南理工大学副教授,广东省力学学会生物力学专委会委员、广东省力学学会爆炸力学与工程爆破专委会委员、广东省生物医学工程学会生物力学专委会委员。主要研究方向为材料动态力-电机理、柔性传感技术、智能可穿戴设备、运动生物力学以及它们在运动与康复医疗领域的应用。
主持或参与国家自然科学基金项目(重点项目1项,面上项目2项目)、国家重点研发计划(2项)、香港创新及科技基金项目(4项)和香港基础研究基金项目(3等)及其企业委托项目多项。在国际权威期刊发表SCI论文40余篇(近五年JCR Q1>20篇,包括Advance Energy Materials, Nano Energy, EcoMat等),被引用1千余次。应邀担任Smart Materials and Structures、Fibers and Polymers、Journal of Micromechanics and Microengineering、Mechanics of Advanced Materials and Structures等多家国际学术期刊的通讯审稿人。
长期招收固体力学方向博士后(特别有交叉力学研究和智能可穿戴设备研究经验者),有兴趣的同学请发简历至byang20210415@scut.edu.cn。