关于举行新加坡国立大学王庆副教授学术报告会的通知 发布者:夏雪峰   发布时间:2021-06-25   浏览次数:10

报告题目:Redox-mediated Electrochemical Energy Conversion and Storage

报告人:王庆博士,新加坡国立大学

报告时间:2021630900

报告地点:工程馆105(腾讯会议ID999724785

摘要:

Redox reaction involving charge transfer at the electrode-electrolyte interface represents an essential process for various electrochemical energy conversion and storage applications, such as fuel cell, electrolyzer and battery, etc. As a result, the operation (i.e. cell voltage, current density, number of charges, etc.) of the above devices is inherently dictated and constrained by the redox reactions. The redox-mediated process, a chemical reaction between an electrolyte-borne redox species electrochemically generated on electrode and a material (generally insoluble in electrolyte) off the electrode, provides additional flexibility in circumventing the constraints intrinsically confronted by the conventional electrochemical devices. One example is the redox targeting of energy storage materials for flow batteries. The redox-mediated reactions of high-capacity solid material stored in the tank with redox electrolyte flowing through it considerably boost the energy density of redox flow battery without compromising its operation flexibility. Another example is redox-mediated oxygen evolution reaction (OER) for water electrolysis. The concurrent electrochemical-chemical cycle enables continuous reaction between an electrolyte-borne redox mediator and an OER catalyst loaded in a fixed-bed reactor spatially separated from the cell, which is believed to be advantageous to enhanced safety. In this talk, I will report our latest advancement in the above areas. In addition, I will briefly introduce some other studies on redox-mediated reactions, such as low-grade waste heat harnessing based on a thermal-electrochemical cycle and battery material recycling based on a one-way redox targeting reaction, etc.

简介:


Dr. Qing Wang is a Dean’s Chair Associate Professor at the Department of Materials Science & Engineering, National University of Singapore. He obtained his PhD in Physics at Institute of Physics, Chinese Academy of Sciences in 2002. Before he moved to Singapore, he had been working with Prof. Michael Grätzel at École Polytechnique Fédérale de Lausanne (EPFL), Switzerland and Dr. Arthur J. Frank at National Renewable Energy Laboratory (NREL), USA, in the area of mesoscopic photoelectrochemical cells. His research interest is “Charge Transport in Mesoscopic Energy Conversion and Storage Systems”. Based on the redox-targeting concept, his group is extensively working on a new research platform — redox targeting-based flow batteries and beyond, with the implementations to a wide variety of battery chemistries and energy materials for advanced energy conversion and storage.