新加坡国立大学欧阳建勇教授:Conductive Polymer: Flexible Transparent Electrode and Application of Flexible Thermoelectric Conversion
日期:2018-10-24
浏览量:170
报告题目:Conductive Polymer: Flexible Transparent Electrode and Application of Flexible Thermoelectric Conversion
报 告 人:欧阳建勇 教授
邀 请 人:黄飞 教授
报告时间:2018年10月24日(周三)上午10:00-11:00
报告地点:北区科技园1号楼国重大楼 502室
欢迎广大师生参加。
材料科学与工程学院
2018年10月20日
报告摘要:
Conductive Polymer: Flexible Transparent Electrode and Application of
Flexible Thermoelectric Conversion
Pro. Jianyong Ouyang
Department of Materials Science and Engineering, National University of Singapore
Conducting polymers were discovered in 1970s. Recent progress in conducting polymers demonstrated their important applications, such as the next-generation transparent electrode and thermoelectric materials. Optoelectronic devices require at least one electrode to be transparent. Indiun tin oxide (ITO) is traditionally used as the transparent electrode of optoelectronic devices. But ITO has problems of scarce indium on earth and poor mechanical flexibility. Conducting polymers, carbon nanotubes, graphene and metal wire grids have been proposed to be the transparent electode materials. Among them, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) is promising to be the next-generation transparent electrode material due to its solution processability, low cost and high transparency in visible range. However, the as-prepared PEDOT:PSS film obtained from PEDOT:PSS aqueous solution usually has conductivity below 1 S cm-1, remarkably lower than ITO. Here, I will present several novel methods to significantly enhance the conductivity of PEDOT:PSS. The conductivity can be enhanced to be more than 3000 S cm-1, which is higher than that of ITO on plastic and comparable to ITO on glass. Moreover, highly conductive PEDOT:PSS can have high thermoelectric properties. They can be used for heat harvesting and cooling at low temperature.
报告人简介:
欧阳建勇 教授,毕业于清华大学化学系,在中国科学院化学所和日本分子科学研究所获得硕士和博士学位,曾在日本北陆先端科学技术大学院大学和美国加州大学洛杉矶分校作助理教授和博士后。2006年加入新加坡国立大学材料与科学工程学院,研究方向包括有机电子、存储器件及纳米材料等,在Nature Materials、Nature Nanotechnology、Nature Communications、Advanced Materials、Nano Letters等学术刊物上发表论文100余篇,平均每篇文章的引用>80次。其中多篇研究成果被MIT Technology Reviews、world journal、azonano.com、Nanotechweb、Journal of Materials Chemistry等报道或评为年度亮点文章。主要研究成果包括发明了世界上第一个高分子/纳米颗粒存储器和刷新了可加工导电高分子的电导和热电性能的世界记录。