报告题目:Harnessing Synergies at the Interface of Polymers and Inorganic Nanomaterials
报 告 人:何杰
报告时间:2017年5月15日(周一)上午9:00
报告地点:14号楼205室
个人简介:
何杰教授现在康涅狄格大学(University of Connecticut)化学系从事科研和教学工作。何教授于2010年在加拿大的谢布克大学获博士学位后,于2011-2013年在美国马里兰大学从事博士后工作,目前的研究兴趣主要为功能高分子材料和杂化材料的设计、合成和应用基础。近几年来在光控聚合物胶束及囊泡设计、聚合物诱导纳米粒子合成与组装和高分子/纳米复合催化材料的应用等方面取得了显著的研究成果,以第一作者/通讯作者在J Am Chem Soc 、Angew Chem Int Ed、Macromolecules、ACS Nano、Small等国际著名期刊上发表学术论文60余篇(其中IF>5的45篇),被SCI引用>1900次。曾荣获康涅狄格大学优秀研究奖(2015)、魁北克优秀国际留学生奖学金(2009-2010)、优秀自费留学生奖学金(2010)和优秀研究生奖学金(2010),并获得加拿大研究生最高奖之一的总督金质奖章(Governor General of Canada's Academic Gold Medal)。
报告简介:
Integration of polymers and inorganic materials as a powerful tool can produce hybrid materials having enriched chemistries of polymers and versatile functionalities of inorganic materials. Harnessing such synergies at the interface of polymers and inorganic nanomaterials has created numerous useful materials in the plastics industry, e.g. fiber reinforced composites and filled rubbers. Our group works on developing new synthetic methodologies of hybrid polymer/inorganic nanomaterials with well-defined chemical compositions, nanostructures and synergetic functionalities. We seek to understand the role of polymers in tuning the interface of hybrid materials in order to control the catalytic properties of inorganic nanomaterials. My talk will show our recent effort on, i) the development of new synthetic methods to prepare polymer-tethered nanoparticles and explore the role of polymer tethers in the self-assembly of nanoparticles in solution and solid states; and ii) control over the electronic properties and accessibility of nanoparticles or metal ions that are incorporated in polymer frameworks. I will introduce the concept of polymer-tethered nanoparticles and the application of hybrid building blocks to prepare highly crystalline mesoporous oxides. The add-on functionality of metal nanoparticles to hybrid materials will be deliberated in the context of photocatalysis. The incorporation of metal ions within polymeric frameworks as functional metallopolymers to mimic natural metalloenzymes will be discussed at the end.