《离散数学》教学大纲
课程代码 | 045101111 |
课程名称 | 离散数学 |
英文名称 | Discrete Mathematics |
课程类别 | 专业基础课 |
课程性质 | 必修 |
学时 | 总学时:64 实验学时:0 |
学分 | 4.0 |
开课学期 | 第二学期 |
开课单位 | 计算机科学与工程学院 |
适用专业 | 计算机科学与技术创新班、联合班 |
授课语言 | 英文授课 |
先修课程 | 无 |
课程对毕业要求的支撑 | 本课程帮助学生提升以下方面的能力: №1.工程知识:能够将数学、自然科学、工程基础和专业知识用于解决计算机复杂工程问题。 №2.问题分析:能够应用数学、自然科学和工程科学的基本原理,识别、表达、并通过文献研究分析计算机复杂工程问题,以获得有效结论。 |
课程目标 |
|
课程简介 | 本课程是当代数学的一个分支,它发展了推理和解决问题的能力并强调了证明的重要性。课程的主题包括逻辑、集合论、关系、计数、图论和抽象代数。它是理解计算机系统的基础。本课程面向有能力并有兴趣更深入更快速地学习离散数学概念的学生。 |
教学内容与学时分配 |
-逻辑命题逻辑和等价性(4学时)
-谓词和量词(5学时)
-推理和证明(5学时)
要点:逻辑证明 难点:嵌套量词,推理规则
-集和操作(4学时)
-函数(4学时)
要点:逆,组成 难点:势
-关系和属性(4学时)
-相等和闭包(6学时)
-偏序关系(6学时)
要点:关系类型及其特征 难点:关系特征
要点:基本计数技术 难点:/
要点:递归,生成函数 难点:解决递归关系
要点:连通性,算法 难点:图的论证
要点:群,格和布尔代数 难点:抽象思维 |
实验教学(包括上机学时、实验学时、实践学时) | 无 |
教学方法 | 讲座,辅导,作业,讨论,中期考试,考试 |
考核方式 | 考勤:10% 作业:10% 期中考试:30% 期末考试(闭卷):50% |
教材及参考书 | 现用教材:Rosen, Kenneth h., Discrete Mathematics and Its Applications, 2 ed, McGraw/Hill |
制定人及制定时间 | 陈百基,2019年4月14日 |
“Discrete Mathematics” Syllabus
Course Code | 045101111 |
Course Title | Discrete Mathematics |
Course Category | Specialty Basic Courses |
Course Nature | Compulsory Course |
Class Hours | Total: 64 Lab Hours: 0 |
Credits | 4.0 |
Semester | Secondary Semester |
Institute | School of Computer Science and Engineering |
Program Oriented | Innovation Class |
Teaching Language | English |
Prerequisites | / |
Student Outcomes (Special Training Ability) | This course helps student to enhance their ability in the following aspect:
|
Course Objectives |
|
Course Description | This course is a branch of contemporary mathematics that develops reasoning and problem-solving abilities, with an emphasis on proof. Topics include Logic, Set Theory, Relation, Counting, Graph Theory and Abstract Algebra. It is the foundation for the rigorous understanding of computer systems. This course is intended for students capable of and interested in progressing through the concepts of discrete mathematics in more depth and at an accelerated rate. |
Teaching Content and Class Hours Distribution | (1) Introduction (1 teaching hour)
(2) Logic and Proof(14 teaching hours) - Propositional Logic and Equivalences (4 teaching hours)
- Predicates and Quantifiers(5 teaching hours)
- Rules of Inference and Proofs(5 teaching hours)
Key points: Logical proof Difficulties:Nested Quantifier, Inference rules (3) Set(8 teaching hours) - Sets and Operations(4 teaching hours)
- Functions(4 teaching hours)
Key points: Inverse, Composition Difficulties:Cardinality (4) Relation(16 teaching hours) - Relations and Properties(4 teaching hours)
- Equivalence and Closures(6 teaching hours)
- Partial Orderings(6 teaching hours)
Key points: Types of relation and theirs characteristics Difficulties:Characteristic of relation (5) Counting(3 teaching hours)
Key points: basic counting technique Difficulties:/ (6) Advanced Counting(6 teaching hours)
Key points: Recurrence, Generating Function Difficulties:Solving Recurrence Relation (7) Graph Theory(6 teaching hours)
Key points: Connectivity, Algorithm Difficulties:Proof in Graph (8) Abstract Algebra(10 teaching hours)
Key points: Group, Lattices and Boolean Algebra Difficulties:Abstract thinking |
Experimental Teaching | / |
Teaching Method | Lecture, tutorial, assignment, discussion, mid-term tests, Examination |
Examination Method | Participation: 10% Assignment: 10% Mid-Term Test: 30% Final Exam (Close Book): 50% |
Teaching Materials and Reference Books | Rosen, Kenneth h., Discrete Mathematics and Its Applications, 2 ed, McGraw/Hill |
Prepared by Whom and When | Patrick P.K. Chan, 2019/4/14 |
专业课程思政建设内容
序号 | 课程名称 | 任课教师 | 职称 | 学院 | 育人目标 | 教学特色 | 预期成效 |
1 | 离散数学 | 陈百基 | 副教授 | 计算机科学与工程学院 | 1.实现计算机专业教学与立德树人教育的有机融合; | 将离散数学的专业知识和实际生活紧密结合,让学生在生活中进一步理解理论知识,了解离散数学在“实干兴邦”中的重要意义 | 1.以“离散数学”的第一堂课为抓手,实现专业教育与课程思政的有效结合; |