《机器学习:过去、现在与将来》教学大纲

课程代码

045101091

课程名称

机器学习:过去、现在与将来

英文名称

Machine Learning: the Past, Current and Future

课程类别

专业基础课

课程性质

必修

学时

总学时:16实验学时:0 实习学时:0 其他学时:0

学分

1

开课学期

第二学期

开课单位

计算机科学与工程学院

适用专业

计算机科学与技术全英创新班、全英联合班

授课语言

英文授课

先修课程

课程对毕业要求的支撑

4.1能够基于科学原理,通过文献研究或相关方法,调研和分析计算机复杂工程问题的解决方案;

9.1 在多学科背景下,能够根据阶段及整体目标,主动与他人沟通、合作,实施团队的组建、协调、指挥能力,提高团队积极性和凝聚力;

10.2 能够跟进专业领域的国际发展趋势、研究热点,具备跨文化交流的语言和书面表达能力,能就专业问题进行基本沟通和交流;

12.1 能够理解技术进步和发展对于知识和能力的影响和要求,具有终身学习的意识;

12.2 能够针对个人和职业发展需求,采用合适的方法,自主学习,能适应计算机相关技术的不断发展。

课程目标

完成课程后,学生将具备以下能力:

同学们会通过小组讨论和撰写论文来探索机器学习的过去、现在与将来。本课程希望鼓励同学们对机器学习研究的兴趣并进一步探索。在介绍基础的机器学习方法和工具外,本课程也会介绍机器学习方法在图像检索、商业智能、模式识别和智能物流等真实问题中的应用。

课程简介

机器学习是计算机科学的一个重要分支。每一年,都有很多的博士生和硕士生从这个领域毕业,包括理论研究和实际应用的大量机器学习成果被提出和实用化。机器学习方法在自动控制、生物信息、信息检索模式识别、商业智能、智能物流、计算机游戏和智能手机等方面均扮演重要的角色。当智能系统正在慢慢地渗透到我们的日常生活中时,我们不禁要问:这些重要和强大的智能系统是如何被创造出来的?在本课程,教师将与同学们一起探索如何创造计算机智能。

教学内容与学时分配

  1. 机器学习导论 (4 学时)

思政建设:机器学习与科技强国

简要的机器学习介绍

机器学习方法简介

  1. 机器学习方法 (4学时)

深入浅出的介绍几个经典的机器学习方法

  1. 机器学习应用-1 (4学时)

商业智能应用例子

  1. 机器学习引用-2 (4学时)

图像检索与物流的应用例子

实验教学(包括上机学时、实验学时、实践学时)

教学方法

课堂教学、小组讨论、学生报告、课外作业等为主。

考核方式

本课程注重过程考核,成绩比例为:

平时课堂表现:50%

课外作业:50%

教材及参考书

现用教材:

没有指定的教科书,鼓励同学们自己在互联网或科研文献库寻找相关的知识。


主要参考:

IEEE Xplorer (http://ieeexplore.ieee.org/)

Science Direct (http://www.sciencedirect.com)

SpringerLink (http://www.springerlink.com/)

制定人及制定时间

吴永贤, 20191017


 “Machine Learning: the Past, Current and Future” Syllabus

Course Code

045101091

Course Title

Machine Learning: the Past, Current and Future

Course Category

Specialty Basic Courses

Course Nature

Compulsory Course

Class Hours

16 teaching sessions, including 0 lab sessions

Credits

1

Semester

The second semester

Institute

School of Computer Science and Engineering

Program Oriented

Computer Science and Technology Creative Full English Creative Class and Full English United Class

Teaching Language

English

Prerequisites

None

Student Outcomes

 (Special Training Ability)

In addition the introduction of basic theory and tools of machine learning, we will also explore applications of machine learning techniques in real applications: information retrieval, business intelligent, pattern recognition and intelligent logistics.

Course Objectives

This course aims to provide undergraduate students with basic knowledge about machine learning. We provide students with strong foundation to facilitate their future study and research in machine learning and pattern recognition. Classmates will explore the past, current and future of machine learning through group discussion and thesis writing. We hope that this course could inspire classmate’s interests to further explore and research in machine learning.

Course Description

Machine learning is one of important branches of computer science. Every year, there are a large number of Ph.D. and master research students graduated with major in this area. Many research works have been done in both theoretical research and real world applications of machine learning techniques. One could find of machine learning techniques play important roles in automatic control, bioinformatics, information retrieval, pattern recognition, business intelligence, intelligent logistics, computer games, smart phones, etc. When we find that intelligent systems are gradually involved in our daily life in every aspect, a question arose: How to create these important and powerful intelligent systems? In this course, I will explore how to make computer intelligent together with classmates.

Teaching Content and Class Hours Distribution

  1. Introduction to Machine Learning (4 hours)

A brief on what are learning and machine learning.

Introduction of some basic tools for machine learning

  1. Machine Learning Methods (4 hours)

A brief on several common machine learning methods

  1. Machine Learning Application-I (4 hours)

Example applications in business intelligence

  1. Machine Learning Application-II (4 hours)

Example applications in image retrieval and logistics


Experimental Teaching

No experiment

Teaching Method

Traditional teaching, group discussion, reports, and assignments.

Examination Method

Class participation: 50%

Homeworks: 50%

Teaching Materials and Reference Books

Textbook:

No dedicated textbook. Students are encouraged to search related knowledge on the Internet or the following research oriented databases:

Major References:

IEEE Xplorer (http://ieeexplore.ieee.org/)

Science Direct (http://www.sciencedirect.com)

SpringerLink (http://www.springerlink.com/)

Prepared by Whom and When

Wing Yin NG, 17 October 2019