吴瀚聪
职称:副教授

个人简介

吴瀚聪,博士,华南理工大学未来技术学院副教授,博士生导师,IEEE会员。主要从事智能传感、可穿戴计算、人机交互、电阻抗成像、触觉感知和假肢机器人的理论研究与技术应用。在重要国际期刊与国际会议发表论文30余篇,获国际会议最佳论文/海报奖4项。现任期刊《Frontiers in Electronics》审稿编辑、《IEEE Transactions on Neural Systems and Rehabilitation Engineering》等十多个SCI专业期刊评审人。

联系邮箱:hancongwu@scut.edu.cn

个人网页:

https://scholar.google.co.uk/citations?user=wJPdTPsAAAAJ&hl=en&oi=ao

教育背景

2015.10-2020.06,爱丁堡大学,数字通信博士

2013.09-2015.06,爱丁堡大学,电子电气工程(2+2)学士

2011.09-2015.06,华南理工大学信息工程(电联班) 学士

工作经历

2023.03-至今,华南理工大学未来技术学院,副教授

2020.09-2023.03,爱丁堡大学信息学院,副研究员

2019.11-2020.08,纽卡斯尔大学工程学院,副研究员

所授课程

《数字系统设计》

《计算机安全和数据安全》

《人工智能导论》

承担项目

1.国家自然科学基金-青年自然科学基金项目, 2025.01-2027.12,主持

2.省级青年拔尖人才项目,2025.01-2027.12,主持

3.广州市基础与应用基础研究专题,2025.01-2026.12,主持

4.企业委托开发项目,2023.12-2026.11,主持

5.琶洲实验室科研项目,2023.06-2026.05,主持

6.Wellcome Institutional Translational Partnership award,2022.03-2022.10,主持

7.Data-Driven Innovation SFC Beacon Open Call,2021.02-2021.07,共同主持

8.University of Edinburgh Innovation Initiative Grant,2018.06-2019.05,主持

9.EPSRC Research Grant,1000万元,2018.01-2023.03,参与

标志性成果

[1] H. Wu, M. Dyson, and K. Nazarpour, Internet of Things for beyond-the-laboratory prosthetics research,  Philosophical Transactions of the Royal Society A, vol. 380, no. 2228 pp. 20210005, 2022.

[2] H. Wu, M. Dyson, and K. Nazarpour, Arduino-Based Myoelectric Control: Towards Longitudinal Study of Prosthesis Use, Sensors, vol. 21, no. 3, p. 763, 2021.

[3] H. Jones, H. Wu et al., Co-creation facilitates translational research on upper limb prosthetics, Prosthesis, vol. 3, no. 2, pp. 110-118, 2021.

[4] R. Ogawa, A. Hallas-Potts, H. Wu, J. Jia, and P. O. Bagnaninchi, Measuring 3D cell culture viability in multiple 3D printed scaffolds within a single miniature electrical impedance tomography sensor, Advanced Engineering Materials, vol. 23, No. 10, 2100338, 2021.

[5] S. Liu, Y. Huang, H. Wu, C. Tan, and J. Jia, Efficient multi-task structure-aware sparse Bayesian learning for frequency-difference electrical impedance tomography, IEEE Transactions on Industrial Informatics, vol. 17, No. 1, pp.463-472, 2021. 

[6] H. Wu, M. Dyson, and K. Nazarpour,  Arduino-based embedded system for myoelectric hand prostheses, in the 27th IEEE International Conference on Electronics Circuits and Systems (ICECS), Glasgow, UK, 2020.

[7] H. Wu, M. Dyson, and K. Nazarpour,  Live demonstration: Real-time myoelectric control with an Arduino, in the 27th IEEE International Conference on Electronics Circuits and Systems (ICECS), Glasgow, UK, 2020.

[8] H. Wu, Y. Yang, P. Bagnaninchi, and J. Jia, Calibrated frequency-difference electrical impedance tomography for 3D tissue culture monitoring, IEEE Sensors Journal, vol. 19, no. 18, pp.7813-7821, 2019.

[9] Y. Yang, H. Wu, J. Jia, and P. Bagnaninchi, Scaffold-based 3-D cell culture imaging using a miniature electrical impedance tomography sensor, IEEE Sensors Journal, vol. 19, no. 20, pp. 9071-9080, 2019.

[10] S. Liu, H. Wu, Y. Huang, Y. Yang and J. Jia, Accelerated structure-aware sparse Bayesian learning for 3D electrical impedance tomography, IEEE Transactions on Industrial Informatics, vol. 15, no. 9, pp. 5033-5041, 2019.

[11] H. Wu, Y. Yang, P. Bagnaninchi, and J. Jia, Electrical impedance tomography for real-time and label-free cellular viability assays of 3D tumour spheroids, Analyst, vol. 143, no.17, pp. 4189-4198, 2018.

[12] H. Wu, W. Zhou, Y. Yang, J. Jia, and P. Bagnaninchi, Exploring the potential of electrical impedance tomography for tissue engineering applications, Materials, vol. 11, no. 6, p. 930, 2018.

[13] X. Yin, H. Wu (Co-first author), J. Jia, and Y. Yang, A micro EIT sensor for real-time and non-destructive 3-D cultivated cell imaging, IEEE Sensors Journal, vol. 18, no. 13, pp. 5402-5412, 2018.

[14]  W. Gamal, H. Wu, I. Underwood, J. Jia, S. Smith, and P. Bagnaninchi, Impedance-based cellular assays for regenerative medicine, Philosophical Transactions of the Royal Society B, vol. 373, no.1750, p. 20170226, 2018.

[15] Y. Yang, H. Wu, and J. Jia, Image reconstruction for electrical impedance tomography using enhanced adaptive group sparsity with total variation, IEEE Sensors Journal, vol. 17, no. 17, pp. 5589-5598, 2017.

[16] H. Wu, Y. Yang, P. O. Bagnaninchi, and J. Jia, Imaging cell-drug response in 3D bioscaffolds by electrical impedance tomography, presented at 2017 IEEE International Conference on Imaging Systems and Techniques (IST), Beijing, China, 2017