学术讲座

关于举行代尔夫特理工大学陈修齐博士后学术报告会的通知

报告题目:Single-Molecule Protein Sequencing with Nanopores单分子纳米孔蛋白测序

报 告 人:陈修齐(代尔夫特理工大学博士后)

主 持 人:付一本副教授

报告时间:2024年11月8日(星期五)下午16:00-17:00

报告地点:华南理工大学广州国际校区C1b-114

主办单位:生物医学科学与工程学院

 生物医学科学与工程学院

                                        2024年11月5日

报告人简介:

陈修齐博士,本科毕业于清华大学生命学院(2016);博士毕业于美国约翰斯霍普金斯大学生物系(2023),导师Christian Kaiser教授,从事光镊和蛋白质折叠研究;现于荷兰的代尔夫特理工大学做博士后,师从Cees Dekker教授,研究纳米孔和蛋白质测序。从事科学研究以来,以第一作者在Nature Communications, PNAS,ACS Nano等期刊上发表多篇论文。获得过蔡雄奖学金(2015),国家优秀自费留学生奖学金(2022),美国生物物理学会差旅资助(2022),Saul Roseman优秀博士毕业论文奖(2023)。


报告摘要:

Protein sequences and post-translational modifications (PTMs) are crucial determinants of protein structure and function. Identifying the precise sequence composition and PTM states of proteins is essential for understanding their roles in biological processes, with critical implications for human disease diagnosis. We have developed a single-molecule nanopore methodology for accurately identifying protein residue substitutions and PTM states.

Our approach involves translocating a DNA-peptide conjugate through a nanopore using a motor protein, which pulls the molecule in a stepwise manner. The resulting ionic current signatures are dependent on the sequence identity of the molecule, allowing us to distinguish single amino acid substitutions and PTMs at multiple locations in the same protein molecule.

We demonstrate that the influence of amino acid residue substitutions spans across multiple motor steps, greatly improving detection sensitivity. Single substitution variants with Aspartic acid (D), Glycine (G) or Tryptophan (W) at the same location were clearly discriminated. Furthermore, we reliably identified phosphorylation states on two closely-spaced Serine (S) residues in a typical immunopeptide. Our method also accurately detected and distinguished sulfation from phosphorylation in a plant hormone peptide, despite a mass difference of only 0.01 Da. The presence or absence of PTMs on two nearby Tyrosine (Y) residues in this peptide was also precisely determined with >96% accuracy.

Our findings showcase the extraordinary sensitivity and accuracy of nanopore methodologies as an emerging single-molecule technique for identifying amino acid substitutions and PTM states. With an improved understanding of the molecular determinants of ionic current during protein translocation, nanopore methodologies are poised to achieve single-molecule de novo protein sequencing and revolutionize fundamental research and diagnostic applications.