报告主题: Asymptotic behavior and regularity theory of the boundary value problem to the Boltzmann equation
报 告 人: 陈泓旭(香港中文大学)
报告时间:2025年 12月29日(星期一)下午3:30-4:30
报告地点:37号楼3A02
邀 请 人: 杨东成 副教授
欢迎广大师生前往!
数学学院
2025年12月28日
报告摘要:
In this talk, I will discuss the boundary value problem of the Boltzmann equation. Generally, the kinetic equation exhibits singularities near the boundary.
In the first part of my talk, I will tackle the singularity issue by introducing a kinetic weight and establishing some weighted regularity. In the second part, I will focus on the asymptotic behavior in the infinite layer domain $R^2\times (-1,1)$. Due to the singularities near the boundary, the high-order energy method is not applicable. We propose a spectral method through Fourier transform in the horizontal direction. Our result demonstrate that the solution to the 2D heat equation with a specific diffusion coefficient can be an asymptotic profile of the corresponding 3D Boltzmann solution with a remainder decaying much faster.
报告人介绍:
陈泓旭,香港中文大学数学学院博士后。2022年毕业于威斯康星大学麦迪逊分校。主要从事偏微分方程的研究工作,研究方向是动理学方程和流体力学方程。部分成果发表在Arch. Ration. Mech. Anal., Math. Ann., SIAM J. Math. Anal. 等国际数学期刊。
