报告主题: Profinite properties of knot groups
报 告 人: 徐啸宇(北京大学)
报告时间: 2025年 11月10日(星期一)下午15:30-17:30
报告地点: 清清文理楼3A02
邀 请 人: 陈麒羽、杜晓明、何遵武、潘会平、孙浩、钟友良
欢迎广大师生前往!
数学学院
2025年11月4日
报告摘要:
Profinite rigidity questions whether certain finitely generated, residually finite groups can be distinguished by their finite quotients. This topic is especially intriguing for groups arising from low-dimensional topology, where rich interconnections between group-theoretic properties and geometric-topological features have been established.
In this talk, I will present some hyperbolic knot (or link) groups that are profinitely rigid within the class of finitely generated 3-manifold groups. Furthermore, I will show that the A-polynomial of prime knots is a profinite invariant, up to a possible mirror image.
报告人介绍:
徐啸宇目前是北京大学的博士生,跟随刘毅研究几何群论与低维拓扑。
