报告主题: Relativistic and Discrete Eigenvalue Problems
报 告 人: 郭琪
报告时间:2025年 10月27日(星期一)下午14:00-15:00
报告地点:37号楼 3A02
邀 请 人: 陈波 副教授
欢迎广大师生前往!
数学学院
2025年10月21日
报告摘要:
In this talk, I will present several distinct eigenvalue problems and explore their interconnections. The first problem concerns the existence of ground states for the nonlinear Dirac equation with power-type nonlinearities. I will demonstrate that, in the nonrelativistic limit, these Dirac ground states converge to the nonlinear Schrödinger ground states. The second problem involves the eigenvalue problem of the discrete Laplacian on a newly introduced random graph model, which features a higher number of connected graphs. I will examine bounds for the first eigenvalue of the discrete Laplacian and discuss an application in geometry.
报告人介绍:
郭琪,中国人民大学讲师,2021年博士毕业于中科院数学所,研究方向为临界点理论、变分法和随机图理论等,近年来主要关注Dirac方程与离散逼近等问题,主持博士后基金一项,国家自然科学基金(青年项目)一项,相关研究工作发表在JDE, SIMA, CVPDE, DCDS, JMP等杂志。
