报告主题: Variational Approximation of Heat Flow of Harmonic Maps into Non-Positively Curved Manifolds
报 告 人: 王长友 教授
报告时间:2025年6月6日(星期五)上午8:40-9:25
报告地点:37号楼3A01
邀 请 人: 温焕尧教授
欢迎广大师生前往!
数学学院
2025年6月3日
报告摘要:
We introduce a new approach to construct (weak) heat flow of harmonic maps between manifolds based on the so-called Weighted-Energy-Dissipation (WED) approach, which involves a variational functional with a small parameter. For smooth target manifolds, we recover the well-known theorems by Eells-Sampson (on NPC target manifolds) through Dynamical Variational Principle (DCP) as well as PDE approach. This is a joint work with Fanghua Lin, Antonio Segatti, and Yannick Sire.
报告人介绍:
王长友,美国Purdue University(普渡大学)数学终身教授,于1996年在Rice大学获得博士学位。研究兴趣包括PDE,几何分析等,主持多项美国自然科学基金,获得荣誉包括:Sloan奖、美国数学会Centennial Fellowship、IMA New Directions奖、Simons Fellowship等。已在CPAM, Arch. Ration. Mech. Anal., Comm. Math. Phys., Trans. Amer. Math. Soc. 等国际高水平期刊发表论文100余篇。