报告题目: A correlatively sparse Lagrange multiplier expression relaxation for polynomial optimization
报 告 人: 瞿铮 研究员
报告时间: 2024年 11月 23 日(星期六)11:20-12:00
地 点:37号楼3A02
邀 请 人: 潘少华、贲树军
数学学院
2024年11月6日
报告摘要:We consider polynomial optimization with correlative sparsity. We construct correlatively sparse Lagrange multiplier expressions (CS-LMEs) and propose CS-LME reformulations for polynomial optimization problems using the Karush-Kuhn-Tucker optimality conditions. Correlatively sparse sum-of-squares (CS-SOS) relaxations are applied to solve the CS-LME reformulation. We show that the CS-LME reformulation inherits the original correlative sparsity pattern, and the CS-SOS relaxation provides sharper lower bounds when applied to the CS-LME reformulation, compared with when it is applied to the original problem. Moreover, the convergence of our approach is guaranteed under mild conditions. In numerical experiments, our new approach usually finds the global optimal value (up to a negligible error) with a low relaxation order, for cases where directly solving the problem fails to get an accurate approximation. Also, by properly exploiting the correlative sparsity, our CS-LME approach requires less computational time than the original LME approach to reach the same accuracy level.
报告人简介:香港理工大学研究员。博士毕业于法国巴黎综合理工学校(2013),并先后在爱丁堡大学(2014-2015)和香港大学(2015-2024)工作。主要研究兴趣为大规模优化与最优控制问题的高效算法。研究内容包括大规模马尔可夫决策过程的加速算法、随机算法的设计与复杂度分析、加速算法的最优重启周期问题、多项式优化问题的全局求解等。部分研究成果发表在SIAM J. Optim.、SIAM J. Control. Optim.、Math. Program. Comput.、IMA J. Numer. Anal.、J. Mach. Learn. Res.等期刊。主持完成国家自然科学基金青年项目1项以及香港资助局基金项目2项。