报告主题: On some properties of Archimedean tiling graphs
报 告 人: 苑立平教授
报告时间: 2024年 5月15日(星期三)下午14:30-15:30
报告地点: 腾讯会议:729-168-796
邀 请 人: 林鸿莺副教授
欢迎广大师生前往!
数学学院
2024年5月13日
报告摘要:A {\it plane tiling $\mathcal{T}$} is a countable family of closed sets with non-empty interiors $\{T_{1}, T_{2},\cdots\}$, which cover the plane without gaps or overlaps. Every closed set $T_{i}\in\mathcal{T}$ is called a {\it tile of} $\mathcal{T}$. We consider the special case in which each tile is a polygon. If the corners and sides of a polygon coincide with the vertices and edges of the
tiling, we call the tiling {\it edge-to-edge}. A so-called {\it type} describes the neighbourhood of any vertex of the tiling. We consider plane edge-to-edge tilings in which all tiles are regular polygons, and all vertices are of the same type. Thus, the vertex-type defines our tiling up to similarity.
There exist precisely eleven such tilings, which are called {\it Archimedean tilings.} A graph formed by an Archimedean tiling is called an {\it Archimedean tiling graph}. In this talk we'll discuss some properties of Archimedean tiling graphs.
报告人介绍:苑立平,自然科学博士(德国),理学博士(中国),教授,博士生导师,河北师范大学数学科学学院院长;中国数学会副理事长、中国工业与应用数学学会理事、河北省数学会副理事长兼秘书长。主要从事离散与组合几何学领域的研究工作,主持国家自然科学基金项目7项、河北省杰出青年科学基金等省部级项目10余项,应邀在国际学术会议作报告20余次;入选教育部新世纪优秀人才、河北省高校百名优秀创新人才、河北省优秀回国人员、河北省教学名师,获霍英东教育基金会高等院校青年教师奖、河北省自然科学奖二等奖。