•  学术报告

关于举行李佳傲教授(南开大学)学术报告会的通知

发布时间:2024-05-11文章来源:华南理工大学数学学院浏览次数:215

报告主题:    On flows and group connectivity of graphs

    :    李佳傲教授

报告时间:    2024519日(星期日)上1000-1100

报告地点:    腾讯会议:660-873-541

    :    林鸿莺副教授

 

欢迎广大师生前往!

数学学院

202459

 

报告摘要:The equivalence of group connectivity for non-homogeneous groups with the same order has been concerned since Jaeger, Linial, Payan and Tarsi introduced this concept in [J. Combin. Theory Ser. B, 56 (1992) 165-182]. Hušek, Mohelníková and Šámal in [J. Graph Theory, 93 (2020) 317-327] showed that Z4-connectivity and Z22-connectivity are not equivalent by finding counterexamples with a computer-assisted proof, and they asked whether one can find a proof that does not use computers. Langhede and Thomassen [European J. Combin., (2023) 103816] provided a compute-free proof to show that there exist 3-edge-connected and Z22-connected, but not Z4-connected graphs. In this talk, we construct 3-edge-connected graphs which are Z4-connected but not Z22-connected in which we prove those properties without any involvement of computers. These two results together answer the question proposed by Hu\v{s}ek et al. about computer-free proofs on the non-equivalence of Z4-connectivity and Z22-connectivity. In addition, by using both theoretical reductions and computer searching we find the smallest graph whose Z4-connectivity varies from Z22-connectivity. This smallest graph (in terms of order and size) is unique, which has 10 vertices and 14 edges.

 

报告人介绍:李佳傲,南开大学数学科学学院,教授,博士生导师。本科和硕士毕业于中国科学技术大学,博士毕业于美国西弗吉尼亚大学(导师为赖虹建教授)。之后入职南开大学,历任讲师、副教授,202212月至今任教授。主要研究兴趣是离散数学与组合图论。包括Tutte整数流理论,图的染色,图结构与分解,加性组合,网络与组合优化等问题。已完成和发表论文三十余篇,研究成果发表在J. Combin. Theory Ser. B, SIAM J. Discrete Math, J. Graph Theory 等杂志。担任天津市数学会秘书长,中国运筹学会图论组合分会理事,以及SCI杂志Journal of Combinatorial Optimization的副编辑(Associate Editor)等学术兼职。入选天津市“131”创新型人才培养工程第三层次(2019),天津市青年人才托举工程(2020),南开大学百名青年学科带头人培养计划(2021)2022年获国家自然科学基金优秀青年科学基金项目资助。