报告主题: The incompressible Navier-Stokes-Fourier-Maxwell system limits of the Vlasov-Maxwell-Boltzmann system for soft potentials: the noncutoff cases and cutoff cases
报 告 人: 雷远杰教授(华中科技大学)
报告时间: 2024年1月12日(星期五)下午3:30-4:30
报告地点: 清清文理楼3A02
邀 请 人: 周富军教授
欢迎广大师生前往!
数学学院
2024年 1月9日
报告摘要:
We obtain the global-in-time and uniform in Knudsen number ε energy estimate for the cutoff and non-cutoff scaled Vlasov-Maxwell-Boltzmann system for the soft potential. For the non-cutoff soft potential cases, our analysis relies heavily on additional dissipative mechanisms with respect to velocity, which are brought about by the strong angular singularity hypothesis, i.e. 1/2≤s<1. In the case of cutoff cases, our proof relies on two new kinds of weight functions and complex construction of energy functions, and here we ask γ≥−1. As a consequence, we justify the incompressible Navier-Stokes-Fourier-Maxwell equations with Ohm's law limit.
报告人介绍:
雷远杰,华中科技大学数学与统计学院教授,主要研究方向为以Boltzmann方程、Landau方程为代表的几类动理学方程(组)的适定型理论。目前在CMP,JFA, SIAM JMA等期刊上发表论文十余篇,主持国家自然科学基金面上项目一项。