•  学术报告

关于举行韩肖垄博士后(清华大学)学术报告会的通知

发布时间:2024-01-03文章来源:华南理工大学数学学院浏览次数:298

报告主题:  The geometry of the Thurston norm, geodesic laminations and Lipschitz maps

    :  韩肖垄(清华大学丘成桐数学中心

报告时间:  202418日上午9:30-11:30

报告地点:  37号楼3A02

    :  杜晓明,潘会平

 

欢迎广大师生前往!

数学学院

2024 13

 

报告摘要:

For closed hyperbolic 3-manifolds, Brock and Dunfield made a conjecture about the upper bound on the ratio of L^2-norm to Thurston norm. We first talk about its proof and describe some generic behavior. We then talk about the connection between the Thurston norm, best Lipschitz circle-valued maps, and maximal stretch laminations, building on the recent work of Daskalopoulos and Uhlenbeck, and Farre, Landesberg, and Minsky. We show that the distance between a level set and its translation is the reciprocal of the Lipschitz constant, bounded by the topological entropy of the pseudo-Anosov monodromy if M fibers.

 

报告人介绍:

韩肖垄,博士毕业于美国伊利诺伊大学厄巴纳香槟分校,现于清华大学丘成桐数学中心任职博士后。主要从事三维流形与双曲几何方面工作。论文发表在Int. Math. Res. Not.Journal of Topology and Analysis等期刊。