报告主题: The geometry of the Thurston norm, geodesic laminations and Lipschitz maps
报 告 人: 韩肖垄(清华大学丘成桐数学中心)
报告时间: 2024年1月8日上午9:30-11:30
报告地点: 37号楼3A02
邀 请 人: 杜晓明,潘会平
欢迎广大师生前往!
数学学院
2024年 1月3日
报告摘要:
For closed hyperbolic 3-manifolds, Brock and Dunfield made a conjecture about the upper bound on the ratio of L^2-norm to Thurston norm. We first talk about its proof and describe some generic behavior. We then talk about the connection between the Thurston norm, best Lipschitz circle-valued maps, and maximal stretch laminations, building on the recent work of Daskalopoulos and Uhlenbeck, and Farre, Landesberg, and Minsky. We show that the distance between a level set and its translation is the reciprocal of the Lipschitz constant, bounded by the topological entropy of the pseudo-Anosov monodromy if M fibers.
报告人介绍:
韩肖垄,博士毕业于美国伊利诺伊大学厄巴纳香槟分校,现于清华大学丘成桐数学中心任职博士后。主要从事三维流形与双曲几何方面工作。论文发表在Int. Math. Res. Not.、Journal of Topology and Analysis等期刊。