报告主题: Compact Relative SO0(2,q)-Character Varieties of Punctured Sphere
报 告 人: 张峻铭(南开大学)
报告时间:2023年12月7日(星期四)下午8:00-9:00
报告地点:腾讯会议:992 303 877
邀 请 人: 孙浩副教授
欢迎广大师生前往!
数学学院
2023年 12月3日
报告摘要:
We prove that there are some relative $\mathrm{SO}_0(2,q)$-character varieties of the punctured sphere which are compact, totally non-hyperbolic and contain a dense representation. This work fills a remaining case of the results of N. Tholozan and J. Toulisse. Our approach relies on the utilization of the non-Abelian Hodge correspondence and we study the moduli space of parabolic $\mathrm{SO}_0(2,q)$-Higgs bundles with some fixed weight. Additionally, we provide a construction based on Geometric Invariant Theory (GIT) to demonstrate that such moduli space we find can be viewed as a projective variety over $\mathbb{C}$. This is a joint work with Yu Feng.
报告人介绍:
张峻铭,现为南开大学在读研究生,研究领域为Higgs丛。