报告主题: On the sums of squares of exceptional units in residue class rings
报告人: 洪绍方 教授(四川大学)
报告时间:2023年11月2日(星期四) 下午17:00-18:00
报告地点:37号楼 3A01
邀请人: 胡甦 副教授
欢迎广大师生前往!
数学学院
2023年11月2日
报告摘要:Let $n\ge 1, e\ge 1, k\ge 2$ and $c$ be integers. An integer $u$ is called a unit in the ring $\mathbb{Z}_n$ of residue classes modulo $n$ if $\gcd(u, n)=1$. A unit $u$ is called anexceptional unit in the ring $\mathbb{Z}_n$ if $\gcd(1-u,n)=1$. We denote by $\mathcal{N}_{k,c,e}(n)$ the number of solutions $(x_1,...,x_k)$ of the congruence $x_1^e+...+x_k^e\equiv c\pmod n$ with all $x_i$ being exceptional units in the ring $\mathbb{Z}_n$. In 2017, Mollahajiaghaei presented a formula for the number of solutions $(x_1,...,x_k)$ of the congruence $x_1^2+...+x_k^2\equiv c\pmod n$ with all $x_i$ being the units in the ring $\mathbb{Z}_n$. Meanwhile, Yang and Zhao gave an exact formula for $\mathcal{N}_{k,c,1}(n)$. In this talk, by using Hensel's lemma and the techniques of exponential sums as well as quadratic Gauss sums, we derive an explicit formula for the number $\mathcal{N}_{k,c,2}(n)$. Our result extends Mollahajiaghaei's theorem and that of Yang and Zhao. This is a joint work with Y.L. Feng.
报告人介绍:洪绍方,四川大学数学学院教授、博士生导师,教育部新世纪优秀人才,四川省学术与技术带头人。已经在国内外数学期刊发表学术论文一百多篇,培养毕业硕士60多名,毕业博士20多名,其中多人已晋升正高职称。