报告题目:Well-Posedness of Constrained Systems with Applications to Affine Variational Inequalities
报 告 人:杨晓琪 教授
报告时间:2023年 10月 9 日(星期一)16:00-17:00
地 点:37号楼3A02
邀 请 人:潘少华教授
数学学院
2023年9月28日
报告摘要:The paper concerns foundations of sensitivity and stability analysis, being primarily addressed constrained systems. We consider general models, which are described by multifunctions between Banach spaces and concentrate on characterizing their well-posedness properties that revolve around Lipschitz stability and metric regularity relative to sets. The enhanced relative well-posedness concepts allow us, in contrast to their standard counterparts, encompassing various classes of constrained systems. Invoking tools of variational analysis and generalized differentiation, we introduce new robust notions of relative coderivatives. The novel machinery of variational analysis leads us to establishing complete characterizations of the relative well-posedness properties with further applications to stability of affine variational inequalities. Most of the obtained results valid in general infinite-dimensional settings are also new in finite dimensions. We will discuss some calculus rules.
报告人简介:杨晓琪,1994年博士毕业于澳大利亚新南威尔士大学应用数学系。现任香港理工大学应用数学系教授,博士生导师。主要从事非线性最优化的研究及其在金融问题中的应用,已经在 Management Science,Operations Research,Mathematics of Operations Research,SIAM Journal on Optimization 等国际刊物发表 200 多篇学术论文。撰写了3本专著。先后主持香港特别行政区政府基金项目 16 项,2000 年获美国 ISI 经典引用奖(ISI Citation Classic Award),2001,2018年获香港理工大学校长杰出贡献奖,2006 年获得重庆市自然科学一等奖。2008年及2014年分别与重庆师范大学合作,成功申请到国家重点项目。