报告题目:Heat flow of s-harmonic maps into spheres
报 告人:王长友教授(美国普渡大学)
报告时间:2023年6月13日(星期二)下午15:00-16:00
报告地点:腾讯会议号:996175378
邀 请人:温焕尧教授
欢迎广大师生前往!
数学学院
2023年6月12日
报告摘要:For 0<s<1, s-harmonic maps into manifolds corresponds to the critical points of the Dirichlet s-energy of maps to manifolds N. The resulting Euler-Lagrange equation involves fractional s-Laplace system with supercritical nonlinearities. While they can be viewed as a natural extension of harmonic maps, in which s=1, the analysis of s-harmonic maps tends out to be much more challenging due to the nonlocal features of the equations. In this talk, I will discuss the time-dependent s-harmonic maps, or $(\partial_t-\Delta)^s u \perp T_u N$. I will describe a recent theorem, joint with Du and Huang, on the partial regularity of suitable weak heat flow of s-harmonic maps. I will also mention an existence theorem, joint with Sire and others, when s=1/2.
报告人简介:王长友教授于1996年在美国Rice大学获得博士学位,研究兴趣包括偏微分方程、几何分析等,曾获海外杰青项目资助(杰青B类)以及主持多项美国自然科学基金项目。获得荣誉包括:Sloan奖,美国数学会Centennial Fellowship,IMA New Directions奖,Simons Fellowship等。