报告题目: First-order algorithms for fractional optimization problems
报 告人: 李洽 副教授
报告时间: 2023年3月12日(星期日)14:50-15:35
报告地点: 四号楼4318会议室
邀 请人: 潘少华
欢迎广大师生前往!
数学学院
2023年3月8日
报告摘要:In this work, we consider a class of single-ratio fractional minimization problems, in which the numerator of the objective is the sum of a nonsmooth nonconvex function and a smooth nonconvex function while the denominator is a nonsmooth convex function. We first derive the first-order necessary optimality condition by using the first-order operators of the three functions involved. Then we propose first-order algorithms, namely, the proximity-gradient-subgradient algorithm (PGSA). Moreover, we develop PGSA with monotone line search (PGSA_ML), PGSA with nonmonotone line search (PGSA_NL), and PGSA with backtracked extrapolation (PGSA_BE) for possible acceleration. It is shown that any accumulation point of the sequence generated by them is a critical point of the problem under mild assumptions. Global convergence analyses of the sequence are established by the Kurdyka-Lojasiewicz (KL) property of the objective or auxiliary functions. Besides, we show that the KL exponent of the sparse generalized eigenvalue problem associated with a pair of symmetric positive semidefinite matrices is 1/2. Some preliminary numerical experiments on generalized eigenvalue problems and sparse signal recovery problems demonstrate the efficiency of the proposed algorithms.
报告人简介:李洽,中山大学计算机学院副教授、博士生导师。2013年获中山大学数学(信息计算科学方向)博士学位;博士期间曾赴美国Syracuse University数学系访问一年;现任中山大学计算机学院数据科学系副主任,广东省计算数学学会理事。研究领域包括最优化理论、算法及在机器学习、数据分析与图像处理等领域的应用,相关论文在ACHA、SIOPT、IP、TMI等应用与计算数学知名期刊上发表,其中一篇获评Inverse Problems期刊2017年度Highlights。主持项目包括国家自然科学基金两项(青年基金与面上项目)以及广东省自然科学基金,参与项目包括参与国家重点研发计划、国家重大研究计划集成项目、广东省重点研发计划。