报告题目: Prandtl-Batchelor flows on a disk
报 告人: 费明稳教授(安徽师范大学)
报告时间: 2022年12月28日(星期三)下午3:00-4:00
报告地点:腾讯会议ID:901-252-498
邀 请人:金海洋
欢迎广大师生前往!
数学学院
2022年12月26日
报告摘要:For steady two-dimensional flows with a single eddy (i.e. nested closed streamlines), Prandtl (1905) and Batchelor (1956) proposed that in the limit of vanishing viscosity the vorticity is constant in an inner region separated from the boundary layer. In this paper, by constructing higher order approximate solutions of the Navier-Stokes equations and establishing the validity of Prandtl boundary layer expansion, we give a rigorous proof of the existence of Prandtl-Batchelor flows on a disk with the wall velocity slightly different from the rigid-rotation. The leading order term of the flow is the constant vorticity solution (i.e. rigid rotation) satisfying the Batchelor-Wood formula.
报告人简介:费明稳,安徽师范大学数学与统计学院副院长,教授,博士生导师,安徽师范大学“文津学者”,安徽省学术和技术带头人后备人选,主要从事Navier-Stokes方程边界层和相场模型界面动力学等方面研究,先后主持国家自然科学基金和安徽省自然科学基金项目多项,曾应邀访问新加坡国立大学、美国佛罗里达州立大学、美国佐治亚理工学院等,研究成果发表在Archive for Rational Mechanics and Analysis、J. Math. Pures Appl.、SIAM Journal on Mathematical Analysis、SIAM Journal on Applied Mathematics、 Physica D: Nonlinear Phenomena、 Peking Mathematical Journal等国内外重要学术期刊上。