报告题目1: On Keller-Segel-consumption systems with singularly signal-dependent motilities
报 告人1: 陶有山教授(上海交通大学)
报告时间1: 2022 年11月 9日(星期三)下午2:30-3:30
报告题目2: Global existence, asymptotic stability and time periodic solution to Chaplain-Lolas model
报 告人2: 金春花教授(华南师范大学)
报告时间2: 2022 年11月 9日(星期三)下午3:30-4:30
报告地点: 腾讯会议ID:351-732-005
邀 请人: 金海洋
欢迎广大师生前往!
数学学院
2022年11月7日
报告摘要1:Starting from briefly reviewing some boundedness and blow-up results on the Keller-Segel-production systems with signal-density suppressed motilities, this lecture reports a recent work, cooperated with Michael Winkler (Paderborn), on global weak solvability for a Keller-Segel-consumption system involving singularly signal-dependent motilities.
报告人简介1:陶有山,上海交通大学数学科学学院特聘教授。主要研究方向为偏微分方程,特别是趋化交叉扩散方程,已在JEMS,PLMS,JFA,ANIHPC,SIMA,SIAP,M3AS等国际数学期刊上发表论文100余篇,MR引用3800余次;连续多年入选科睿唯安“全球高被引科学家”;现担任2份国际期刊Nonlinear Analysis: RWA和EMS Surveys in Mathematical Sciences的编委。
报告摘要2:We consider a kind of PDE-ODE system proposed by Chaplain and Lolas, which describes the invasion and diffusion process of solid tumors during the vascular growth stage. Some results about global existence of solutions, large time behavior, and time periodic solutions of this model will be introduced.
报告人简介2:金春花,华南师范大学教授。长期从事非线性扩散模型相关理论的研究,研究工作发表在Bull. London Math. Soc.,J Nonlinear Sci., Physica D, Nonlinearity,JDE,JDDE 等期刊。入选教育部新世纪优秀人才支持计划,主持包括国家自然科学基金面上项目, 广东省杰出青年基金项目等在内的多项研究课题。