•  学术报告

关于举行戴欣荣教授(中山大学)学术报告会的通知

发布时间:2022-10-04文章来源:华南理工大学数学学院浏览次数:338

报告主题:    Frame set for Gabor systems with Haar window

报 戴欣 荣教授(中山大学)

报告时间:2022107日(星期五)下午3:30-4:30

报告地点:四号楼224

邀 : 李兵 教授

 

欢迎广大师生前往!

数学学院

2022104

 

报告摘要:We show the full structure of the frame set for the  Gabor system $\mathcal{G}(g;\alpha,\beta):=\{e^{-2\pi i m\beta\cdot}g(\cdot-n\alpha):m,n\in\Bbb Z\}$ with the window being the Haar function $g=-\chi_{[-1/2,0)}+\chi_{[0,1/2)}$. This is the first compactly supported window function that the frame set is represented explicitly. The strategy of the proof  is to introduce the piecewise linear transformation $\mathcal{M}$ on the unit circle, and to  provide a complete characterization of structures for its (symmetric) maximal invariant sets. This transformation is related to the famous three gap theorem of Steinhaus which may be of independent interest. Furthermore, a classical criterion on Gabor frames is improved, which allows us to establish  {a} necessary and sufficient condition for the Gabor system $\mathcal{G}(g;\alpha,\beta)$ to be a frame, i.e.,  the symmetric invariant set of the transformation $\mathcal{M}$ is empty.