报告主题: Frame set for Gabor systems with Haar window
报 告人: 戴欣 荣教授(中山大学)
报告时间:2022年 10月7日(星期五)下午3:30-4:30
报告地点:四号楼224室
邀 请人: 李兵 教授
欢迎广大师生前往!
数学学院
2022年10月4日
报告摘要:We show the full structure of the frame set for the Gabor system $\mathcal{G}(g;\alpha,\beta):=\{e^{-2\pi i m\beta\cdot}g(\cdot-n\alpha):m,n\in\Bbb Z\}$ with the window being the Haar function $g=-\chi_{[-1/2,0)}+\chi_{[0,1/2)}$. This is the first compactly supported window function that the frame set is represented explicitly. The strategy of the proof is to introduce the piecewise linear transformation $\mathcal{M}$ on the unit circle, and to provide a complete characterization of structures for its (symmetric) maximal invariant sets. This transformation is related to the famous three gap theorem of Steinhaus which may be of independent interest. Furthermore, a classical criterion on Gabor frames is improved, which allows us to establish {a} necessary and sufficient condition for the Gabor system $\mathcal{G}(g;\alpha,\beta)$ to be a frame, i.e., the symmetric invariant set of the transformation $\mathcal{M}$ is empty.