报告题目:Propagation of moments and sharp convergence rates for the non-cutoff Boltzmann equation with soft potentials
报 告人:何凌冰教授(清华大学)
报告时间: 9月14日(星期三) 10:00-11:00
报告地点:腾讯会议号: 296-963-137 会议密码:220914
邀 请人:罗益龙副教授
欢迎广大师生前往!
数学学院
2022年9月13日
报告摘要:We consider the well-posedness for the non-cutoff Boltzmann equation with soft potentials when the initial datum is close to the Maxwellian and has only polynomial decay at the large velocities in $L^2$ space. As a result, we get the propagation of the exponential moments and the sharp rates of the convergence to the Maxwellian which seems the first results for the original equation with soft potentials. The new ingredients of the proof lie in localized techniques, the semigroup method as well as the propagation of the polynomial and exponential moments in $L^2$ space.
报告人介绍:何凌冰,教授,清华大学数学系,主要研究方向为Boltzmann方程及Landau方程解的正则性传播和渐进性行为。在Ann. Sci. Éc. Norm. Supér、 Math. Ann.、 Ann. PDE、 Arch. Ration. Mech. Anal.、Comm. Math. Phys.、SIAM J. Math. Anal.、J. Funct. Anal.、 J. Stat. Phys.等国际主流数学杂志发表论文30余篇。