报告题目:Uniform regularity and vanishing viscosity limit for the compressible Navier-Stokes
with general Navier-slip boundary conditions in three-dimensional domains
报 告人:王勇副 研究员(中科院数学与系统科学研究院)
报告时间:2022年6月22日(星期三)15:00-16:00
报告地点:腾讯会议号:790-212-545
邀 请人:温焕尧教授
欢迎广大师生前往!
数学学院
2022年6月17日
报告摘要:In this paper, we investigate the uniform regularity for the isentropic compressible Navier-Stokes system with general Navier-slip boundary conditions and the inviscid limit to the compressible Euler system. It is shown that there exists a unique strong solution of the compressible Navier-Stokes equations with general Navier-slip boundary conditions in an interval of time which is uniform in the vanishing viscosity limit. The solution is uniformly bounded in a conormal Sobolev space and is uniformly bounded in W^{1,\infty}. It is also shown that the boundary layer for the density is weaker than the one for the velocity field.
报告人简介:王勇,中科院数学与系统科学研究院副研究员。2012年博士毕业于中科院数学与系统科学研究院,曾获中科院数学与系统科学研究院“重要科研进展奖”、入选中科院数学与系统科学研究院“陈景润未来之星”计划、入选中科院青年创新促进会。2020年获国家优秀青年科学基金资助,并主持完成国家自然科学基金面上项目1项。主要研究可压缩Euler方程、可压缩Navier-Stokes方程、Boltzmann方程等方程的适定性和流体动力学极限。在Communications on Pure and Applied Mathematics、Advances in Mathematics (2篇)、Archive Rational Mechanics Analysis (6篇) 和 SIAM Journal in Mathematics Analysis (9篇) 等国际著名刊物上接受和发表学术论文30余篇。