报告题目:Fully nonlinear PDEs on Hermitian manifolds for symmetric functions of partial Laplacians and related geometric problems
报 告人:关波教授 (The Ohio State University)
报告时间: 2020年6月16日(星期四) 上午10:00-11:00
报告地点:腾讯会议号: 308-214-473 会议密码:220616
邀 请人:袁日荣助理教授
欢迎广大师生前往!
数学学院
2022年6月14日
报告摘要:We consider a class of fully nonlinear second order elliptic and parabolic equations on Hermitian manifolds which appear in geometric problems such as Chern-Ricci type flows and conformal deformations of Chern-Ricci forms. These equations are also closely related to the general notion of G-plurisubharmonicity of Harvey-Lawson. In this talk we discuss a new Kahler-Ricci type flow for a power of the Kahler form and related equations. Under fairly general assumptions we derive interior estimates and establish the existence of smooth solutions for the Dirichlet problem as well as for equations on closed manifolds. The talk is based on joint work with Mathew George and Chunhui Qiu.
报告人简介:关波,俄亥俄州立大学数学系教授。研究方向为非线性偏微分方程和几何分析, 主要工作包括一般区域/流形上实和复蒙日-安培方程;常高斯曲率曲面的普拉图问题;闵可夫斯基问题的推广;关于双曲空间中具有常曲率和给定渐近边界的完备曲面的研究;以及实或复流形上一般完全非线性偏微分方程。其部分学术论文发表在 Adv. Math., Amer. J. Math., Annals of Math., CPAM, Duke Math. J., JDG, J. Eur. Math. Soc., J. Reine Angew. Math.等学术期刊上。