报告题目:An alternative for minimal group actions on totally regular curves
报 告人:史恩慧 教授
报告时间:2022年5月13日(星期五)19:30---20:30
报告地点:腾讯会议:会议ID:360503953,会议密码:774023
邀 请人:马东魁教授
欢迎广大师生前往!
数学学院
2022年5月9日
报告摘要:Let G be a countable group and X be a totally regular curve. Suppose thatφ : G → Homeo(X) is a minimal action. Then we show an alternative: either the action is topologically conjugate to isometries on the circle (this implies that φ(G) contains an abelian subgroup of index at most 2), or has a quasi-Schottky subgroup (this implies that G contains the free nonabelian group Z ∗ Z). In order to prove the alternative, we get a new characterization of totally regular curves by means of the notion of measure; and prove an escaping lemma holding for any minimal group action on infinite compact metric spaces, which improves a trick in Margulis’proof of the alternative in the case that X is the circle. This is a joint work with Xiangdong Ye and Hui Xu.
报告人介绍:史恩慧,苏州大学数学科学学院教授,博士生导师。主要从事群作用拓扑动力系统和遍历理论研究,在中国科学,数学学报,TAMS,Israel J. Math,ETDS,Fund. Math. 等国际著名数学期刊接受和发表论文40余篇,主持国家自然科学基金等项目多项。