报告题目:Energy convexity and uniqueness for intrinsic biharmonic map and its variant
报 告人:林龙智副教授
报告时间: 2022年5月18日(星期三)11:00-13:00
报告地点:腾讯会议950-142-552 会议密码:202205
邀 请人:袁日荣助理教授
欢迎广大师生前往!
数学学院
2022年5月9日
报告摘要:In this talk we will survey some recent results on the energy convexity for weakly harmonic and biharmonic maps and the applications. We will then introduce a conformally invariant analogue of the intrinsic biharmonic map that we call conformal-harmonic map, which is a critical point of a conformally invariant energy functional in four dimension and satisfies a conformally invariant fourth order Paneitz-type PDE. A version of energy convexity and uniqueness for conformal-harmonic maps that we showed in a most recent work in progress will be discussed.
报告人介绍:林龙智,现任美国加州大学圣塔克鲁兹分校(University of California, Santa Cruz)终身副教授,2011年在美国约翰霍普金斯大学(Johns Hopkins University)获得博士学位,2011年至2014年在罗格斯大学(Rutgers Univeristy New Brunswick)做博士后,2014年至2018年任美国加州大学圣塔克鲁兹分校(University of California, Santa Cruz)助理教授, 2018年升任终身副教授。研究领域是几何分析和偏微分方程。研究工作发表于Geometry & Topology, Analysis & PDE, J. Reine Angew. Math. (Crelle's Journal), Communications in Analysis and Geometry, Calculus of Variations and PDEs, J. Geom. Anal.等重要数学杂志。