报告题目:Stability of the multi-solitons of the modified Korteweg–de Vries equation
报 告人:王忠 副教授 (佛山科学技术学院)
报告时间:2022年4月17日(星期日)上午 10:30-11:30
报告地点:腾讯会议,会议号:437-142-433
邀 请人:凌黎明 教授
欢迎广大师生前往!
数学学院
2022年 4月16日
报告摘要:We establish the nonlinear stability of N-soliton solutions of the modified Korteweg–de Vries (mKdV) equation. The N-soliton solutions are global solutions of mKdV behaving at (positive and negative) time infinity as sums of one-solitons with speeds . The proof relies on the variational characterization of N-solitons. We show that the N-solitons realize the local minimum of the (N + 1)th mKdV conserved quantity subject to fixed constraints on the N first conserved quantities. To this aim, we construct a functional for which N-solitons are critical points, we prove that the spectral properties of the linearization of this functional around an N-soliton are preserved on the extended timeline, and we analyze the spectrum at infinity of linearized operators around one-solitons. The main new ingredients in our analysis are a new operator identity based on a generalized Sylvester law of inertia and recursion operators for the mKdV equation.
报告人简介:王忠,佛山科学技术学院数学系副教授,2016年毕业于中山大学,师从崔尚斌教授;曾先后访问法国巴黎综合理工学院Yvan Martel 和图卢兹第三大学。主要研究方向为非线性色散方程多孤立子解的稳定性和渐近稳定性,并且在CVPDE, Nonlinearity 等期刊发表多篇学术论文,曾主持青年基金和广东省基金等项目。