•  学术报告

关于举行北京理工大学李庆娜教授的学术报告通知

发布时间:2022-03-30文章来源:华南理工大学数学学院浏览次数:380

报告题目: A Facial Reduction Approach to the Single Source Localization Problem 

报 告人: 李庆娜 教授

报告时间: 202242日(星期六)9:00-10:30              

报告地点:腾讯会议号654-714-965  会议密码:220402

 https://meeting.tencent.com/dm/cc4AYGpA9AVE

邀 请人:潘少华教授

  

   欢迎广大师生前往!

数学学院

2022330

 

报告摘要:The single source localization problem (SSLP) appears in several fields such as signal processing and global positioning systems. The optimization problem of SSLP is nonconvex and it is difficult to find the global optimal solution. It can be reformulated as a rank constrained Euclidean distance matrix (EDM) completion problem with a number of equality constraints. In this paper, we propose a facial reduction approach to solve such EDM completion problem. For the constraints of fixed distances between sensors, we reduce them to a face of the EDM cone and derive the closed formulation of the face. We prove constraint nondegeneracy for each feasible point of the resulting EDM optimization problem without rank constraint. To tackle the nonconvex rank constraint, we apply the majorized penalty approach developed by Zhou et al. (IEEE Trans Signal Process 66(3):43314346, 2018). Numerical results verify the fast speed of the proposed approach while giving comparable quality of solutions as other methods. 

 

报告人介绍娜,北京理工大学数学与统计学院教授,博士生导师。湖南大学本科、博士,中科院数学与系科学研究院博士后. 曾访问英国南安普大学,新加坡国立大学、香港中文大学等。主持国家自然科学基金青年、面上目等. 中国筹学会数学化分会青年理事,北京筹学会理事。著有著《多维标度方法》,教材《最化方法》、《凸分析讲义》等三部。指多名本科生竞赛表学术论文。2020年北京市高校毕业设计荣誉称号。主要研究最化理与算法及