报告题目:Theory of Invariant Manifolds for Infinite-dimensional Nonautonomous Dynamical Systems and Applications
报 告人:王荣年 教授(上海师范大学)
报告时间:2022年3月21日(星期一)上午10:00-- 11:00
报告地点:腾讯会议:215 773 446,密码:220321
邀 请人:曾才斌 副教授
欢迎广大师生前往!
数学学院
2022年3月18日
报告摘要:We consider an abstract nonautonomous dynamical system defined on a general Banach space. We prove that under several conditions, there exists a finite- dimensional Lipschitz invariant manifold. The manifold has an exponential tracking property acting on a local range. We then apply this general framework to two types of nonautonomous evolution equations: Scalar reaction-diffusion equations and FitzHugh-Nagumo systems, on 2-D rectangular domains or a 3-D cubic domain. We prove the existence of an inertial manifold of nonautonomous type for the former while a finite-dimensional global manifold for the latter. It is significant that the spectrum of the Laplacian $\Delta$ is not guaranteed to have arbitrarily large gaps on these spatial domains.
报告人简介:王荣年, 博士, 上海师范大学教授, 博士生导师(应用数学)。目前主要从事非线性发展方程的适定性、多值扰动及解集的拓扑正则性、不变流形理论等问题的研究, 完成的研究结果已被Mathematische Annalen、International Mathematics Research Notices、Journal of Functional Analysis、Journal of Differential Equations、Journal of Physics A: Mathematical and Theoretical.等学术期刊发表。主持承担了2项国家自然科学基金面上项目、国家自然科学基金青年项目、4项省自然科学基金项目和2项省教育厅基金项目。