报告题目:Dynamics for a Random Differential Equation: Invariant Manifolds, Foliations, and Smooth Conjugacy between Center Manifolds
报 告人:赵君一郎 博士(西南交通大学)
报告时间:2022年3月24日(星期四)上午10:00--11:00
报告地点:腾讯会议:368 780 902,密码:220324
邀 请人:曾才斌 副教授
欢迎广大师生前往!
数学学院
2022年3月18日
报告摘要:We prove that for a random differential equation with the driving noise constructed from a Q-Wiener process and the Wiener shift, there exists a local center, unstable, stable, center-unstable, center-stable manifold, and a local stable foliation, an unstable foliation on the center-unstable manifold, and a stable foliation on the center-stable manifold, the smoothness of which depends on the vector fields of the equation. Also we show that any two arbitrarily local center manifolds constructed as above are conjugate.
报告人简介:赵君一郎,西南交通大学助理研究员,2018年博士毕业于美国杨百翰大学,现主持国家自然科学基金青年基金项目一项,在JDE、JDDE、PAMS等期刊发表近十篇论文。