•  学术报告

关于举行重庆大学孔德荣教授学术报告会的通知

发布时间:2022-01-10文章来源:华南理工大学数学学院浏览次数:341

报告题目: Critical values for the beta-transformation with a hole at 0

 告人: 孔德荣 教授 (重庆大学)

报告时间: 2022年 1月 17日(星期 一)上午 10:00-11:00  

报告地点:腾讯会议号:121-363-242 会议密码:202201

 请人: 李兵 教授

欢迎广大师生前往!

数学学院

2022年 1月 10 日

报告摘要: Given \beta\in(1,2] and t\in(0,1), let K_\beta(t) be the survivor set consisting of all x\in[0,1) whose orbit never hits the open interval (0,t) under the beta-transformation. Kalle et al. proved in [ETDS 2020] that the Hausdorff dimension dim_H K_\beta(t) is a non-increasing Devil's staircase with respect to the parameter t. So there exists a critical value \tau(\beta) such that dim_H K_\beta(t)>0 if and only if t<\tau(\beta). In this paper we determine the critical value \tau(\beta) for all \beta\in(1,2], answering a question of Kalle et al. (2020). Furthermore, we describe the analytic properties of the critical value function \tau(\beta), and show that \tau(\beta) is left continuous with right hand limits everywhere, but has countably infinitely many discontinuities. Our strategy to find the critical value \tau(\beta) depends on certain substitutions of Farey words and a renormalization scheme from dynamical systems.


报告人简介:孔德荣,重庆大学百人计划研究员,博士生导师。2012年博士毕业于荷兰代尔夫特理工大学,2016-2018年在荷兰莱顿大学从事博士后研究。主要研究方向:分形几何与动力系统。在Adv.Math.,Trans. AMS,Math.Z.,ETDS,Nonlinearity, JNT, Adv.Appl.Math.等期刊发表论文三十篇。主持国家自然科学基金面上项目、青年项目及多项省部级科研项目。