报告题目: Intermetiate Dimensions and Random Fractals
报 告人: 肖益民教授 (美国密西根州立大学)
报告时间: 2022年1月 6、7、8 日(星期四、五、六)上午 09:00-11:00
报告地点:腾讯会议:351-3390-1790;会议密码:2022
邀 请人: 匡锐 副教授
欢迎广大师生前往!
数学学院
2021年12月29日
报告摘要:
The notion of intermediate dimensions was introduced recently by Falconer, Fraser and Kempton [5] in 2019 to provide a continuum of dimensions between Hausdorff and box-counting. Several authors have applied intermediate dimensions to study deterministic and random fractals (cf. [1] [2] [3]). We refer to [4] for a survey.
In our lectures, we plan to cover the following topics:
(i) Definition and basic properties of intermediate dimensions
(ii) Mathematical tools for computing intermediate dimensions
(iii) Examples of self-similar or self-affine fractals
(iv) Apply intermediate dimensions to study random fractals determined by the sample functions of Markov processes such as stable Levy processes (cf. [7]) or Gaussian random fields such as fractional Brownian motion ([1] [6] [8]).
References
[1] S. Burrell. Dimensions of fractional Brownian images, arxiv: 2002.03659.
[2] S. Burrell, K. J. Falconer and J. Fraser. Projection theorems for intermediate dimensions, to appear, J. Fractal Geom., arxiv: 1907.07632.
[3] K.J. Falconer. A capacity approach to box and packing dimensions of projections of sets and exceptional directions, J. Fractal Geom. to appear.
[4] K.J. Falconer. Intermediate dimensions - a survey. arXiv:2011.04363
[5] K. J. Falconer, J. M. Fraser and T. Kempton. Intermetiate dimensions, Math. Zeit. 296 (2020), 813-830.
[6] Y. Xiao. Packing dimension of the image of fractional Brownian motion, Statist. Probab. Lett. 33 (1997), 379-387.
[7] Y. Xiao. Random fractals and Markov processes. In: Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot, (Michel L. Lapidus and Machiel van Frankenhuijsen, editors), pp. 261-338, American Mathematical Society, 2004.
[8] Y. Xiao. Sample path properties of anisotropic Gaussian random fields. In: A Minicourse on Stochastic Partial Differential Equations, (D. Khoshnevisan and F. Rassoul-Agha, editors), Lecture Notes in Math. 1962, pp. 145-212. Springer, New York, 2009.
报告人简介:肖益民教授主要从事随机过程,随机场(特别是Levy过程,高斯场)及随机偏微分方程解的几何性质和位势理论等方面的研究。在下列几方面取得了一系列具有国际先进水平的研究成果:
(1)运用分形几何的工具,对高斯随机场及一般具有无穷可分分布的随机场的样本轨道性质进行刻画。特别是运用“强局部不确定性”对高斯场的局部时理论,精确连续模及分形测度函数等方面进行研究,其方法已被用于研究随机偏微分方程解的性质。
(2)在随机场的位势理论方面,与Utah大学的Davar Khoshnevisan教授合作,发展了可加Levy过程和Brown单的位势理论,建立了各种“击中”概率与“解析容度”之间的对应关系。该理论不仅是随机场理论中重要的组成部分,而且为研究通常马氏过程,特别是为Levy过程样本轨道性质的研究提供了有力的工具。
(3)在Levy过程的样本轨道研究方面,与Davar Khoshnevisan教授合作,运用可加随机场的位势理论,解决了一系列关于Levy过程自1969年以来遗留下来的、由著名概率论学家W.E.Pruitt(1969)、J.-P. Kahane(1983)和Jean Bertoin(1999)等人提出的公开问题,其中包括一般Levy过程的象集的Hausdorff维数的计算公式,Levy过程在一般紧集上相交性的判别法及再生集合相交性的判别法。
由于在随机场理论方面做出的学术贡献,肖益民教授于2011年当选为Fellow of the Institute of Mathematical Statistics。肖益民教授是密西根州立大学统计学院首席教授,同时担任《Statistics and Probability Letters》、《Illinois Journal of Mathematics》、《Science in China, Mathematics》等期刊的主编或编委。近五年共发表35篇期刊论文,多数刊登在Annals of Probability,Probability Theory and Related Fields,Comm. Math. Physics等国际一流期刊。