报告主题:On hot spots conjecture for domain with n-axes symmetry
报 告人:陈红斌 教授 (西安交通大学)
报告时间:2021年12月10日(星期五)15:00-16:00
报告地点:腾讯会议:728-534-375
邀 请人:姚若飞 助理教授
欢迎广大师生前往!
数学学院
2021年12月9日
报告摘要: In this paper, we prove the hot spots conjecture for n-axes symmetric domain in R^n by continuity method. More precisely, we show that the odd Neumann eigenfunctions with lowest nonzero eigenvalues are the Morse functions on the boundary that have exactly two non-degenerate critical points and the eigenfunctions are monotone in the direction from minimum point to maximum point. As a consequence, we show that hot spots conjecture holds for such kind of domains provided that the second Neumann eigenvalue is simple. And we also settle the Jerison and Naridashvili's conjecture for the domains with n-axes symmetry or hyperbolic drum.
报告人简介:陈红斌,西安交通大学数学与统计学院教授、博士生导师。1992毕业复旦大学数学系获理学博士学位,1994聘为西安交通大学副教授,2002聘为教授,主要从事非线性泛函与偏微分方程的定性理论研究,近年来对最热点猜想以及相关问题感兴趣。曾在国内外重要刊物上发表研究论文40多篇。