课程名称:Geometric methods in advanced statistical inference
主 讲 人:邱兴(罗彻斯特大学)
报告地点:腾讯会议834 0034 7390;会议密码:2021
邀 请 人:杨俊副教授
时间安排:
序号 | 时间 | 题目 |
第一讲 | 12月13日9:00-10:30 | Introduction to Lie groups |
第二讲 | 12月14日9:00-10:30 | Invariant and equivariant statistical models |
第三讲 | 12月15日9:00-10:30 | Using symmetry in robust parameter estimation |
第四讲 | 12月16日9:00-10:30 | Symmetry, differential equations, and statistics |
第五讲 | 12月17日9:00-10:30 | Using general linear group to speedup dynamic network analysis |
第六讲 | 12月20日9:00-10:30 | Applications of geometric methods to real world statistical problems |
第七讲 | 12月21日9:00-10:30 | Future directions in geometric methods for statistical models |
第八讲 | 12月22日9:00-10:30 | Interactive discussions |
课程介绍:We propose to study the statistical analysis on manifold by the method of symmetry. Many useful manifolds are symmetric under certain Lie group actions. From the statistical perspective, if we have a statistical model that is invariant or equivariant under a Lie group transformation, we can first study the properties of the corresponding Lie algebra, which is a linear space therefore easy to study, and then use the exponential map to translate these properties back to the original Lie group hence the original statistical model. We can also use Lie groups to construct maximal invariant, and use it as an efficient dimension reduction method.
报告人简介:邱兴,1996年获华南理工大学工学学士学位,1996年师从沈尧天老师,2004年获罗彻斯特大学博士学位。现任罗彻斯特大学教授,在微分方程与泛函分析,随机过程,统计数据处理上有很深的造诣。已在Nature等期刊发表论文九十余篇。