报告题目:Fourier decay and applications on fractal geometry
报 告人:高翔博士(湖北大学)
报告时间:2021年9月22日(星期三)上午10:00-11:30
报告地点:腾讯会议:601 708 366
邀 请人:武文副教授
欢迎广大师生前往!
数学学院
2021年9月14日
报告摘要:The estimates for Fourier decay of fractal measures have rapidly developed in the last decade. In this talk, we mainly focus on the asymptotic behavior of Fourier transform of fractal measures, such as self-similar measures, etc. Moreover, we discuss some methods of how to estimate the Fourier decay rate of some fractal measures. In particular, we will show that there are so many close connections between the theory of Fourier decay with Diophantine approximation, additive combinatorics, probability theory, etc. As applications, we investigate the stochastic、arithmetic properties and dynamic behavior on the fractal set.
报告人简介:高翔,博士,现任职于湖北大学数统学院。先后毕业于武汉理工大学,华中科技大学和武汉大学(法国亚眠大学联培博士)。曾访问交流于法国东巴黎大学、芬兰奥卢大学、华中师范大学,华南理工大学等高校,研究方向为度量数论、动力系统、傅里叶分析在分形中的应用,近期主要关注分形测度的傅里叶变换衰减性的研究及其在分形几何上的应用。