报告题目:The proper actions of relatively hyperbolic groups on finite products of quasi-trees
报 告 人:韩素珍博士后(中国科学院数学与系统科学研究院)
报告时间:2021年9月19日(星期日)上午9:00-10:00
报告地点:腾讯会议,会议号:890 782 901
邀 请 人:杜晓明副教授
欢迎广大师生前往!
数学学院
2021年9月14日
报告摘要:A finitely generated group has property (QT) if it can act properly on a finite product of quasi-trees so that the orbit map is a quasi-isometric embedding. This notion is introduced by M. Bestvina, K. Bromberg and K. Fujiwara, who also established such property for residually finite hyperbolic groups and mapping class groups. In a joint work with H.T. Nguyen and Wenyuan Yang, we generalize their result for hyperbolic groups, and showed that residually finite relatively hyperbolic groups have property (QT) if their peripheral subgroups satisfy some mild conditions. Moreover, we determined whether a 3-manifold group has property (QT).
报告人简介:韩素珍博士毕业于北京大学,目前在中国科学院数学与系统科学研究院做博士后,研究方向是几何群论。