报告人 | 报告题目和摘要 | 报告时间 |
Prof. Ming Chen 美国匹兹堡大学 | 题目:Non-uniqueness for the isentropic Euler system 摘要:We consider global weak solutions to the compressible isentropic Euler system satisfying an additional global energy inequality. Using a generalization of a key step of the convex integration method developed by De Lillis-Szekelyhidi, we show that in dimension 2 and 3, for any initial datum from a dense subset of the energy space, there exist infinitely many global-in-time admissible weak solutions. This is a joint work with A. Vasseur and C. Yu. | 9:00-9:40 |
Prof. Cheng Yu 美国佛罗里达大学 | 题目: Global solutions of the compressible Navier-Stokes equations 摘要:In this talk, I will talk about the existence of global weak solutions for the compressible Navier-Stokes equations, in particular, the viscosity coefficients depend on the density. Our main contribution is to further develop renormalized techniques so that the Mellet-Vasseur type inequality is not necessary for the compactness. This provides existence of global solutions in time, for the barotropic compressible Navier-Stokes equations, for any $\gamma>1$, in three dimensional space, with large initial data, possibly vanishing on the vacuum. This is a joint work with D. Bresch, A. Vasseur. | 9:40-10:20 |
报告日期:2021年7月6日
报告地点: 腾讯会议,会议ID:580 150 609
邀请人:温焕尧 教授
欢迎广大师生前往!
数学学院
2021年7月6日