•  学术报告

关于举行偏微分方程系列学术报告会的通知

发布时间:2021-07-06文章来源:华南理工大学数学学院浏览次数:372


报告人

报告题目和摘要

报告时间

Prof. Ming Chen

美国匹兹堡大学

题目:Non-uniqueness for the isentropic Euler system

摘要:We consider global weak solutions to the compressible isentropic Euler system satisfying an additional global energy inequality. Using a generalization of a key step of the convex integration method developed by De Lillis-Szekelyhidi, we show that in dimension 2 and 3, for any initial datum from a dense subset of the energy space, there exist infinitely many global-in-time admissible weak solutions. This is a joint work with A. Vasseur and C. Yu.

900-940

Prof. Cheng Yu

美国佛罗里达大学

题目:

Global solutions of the compressible

Navier-Stokes equations

摘要:In this talk, I will talk about the existence of global weak solutions for the compressible Navier-Stokes equations, in particular, the viscosity coefficients depend on the density. Our main contribution is to further develop renormalized techniques so that the Mellet-Vasseur type inequality is not necessary for the compactness.  This provides existence of global solutions in time, for the barotropic compressible Navier-Stokes equations, for any $\gamma>1$, in three dimensional space, with large initial data, possibly vanishing on the vacuum. This is a joint work with D. Bresch, A. Vasseur.

940-1020

  

报告日期:202176

报告地点: 腾讯会议,会议ID580 150 609

邀请人:温焕尧 教授

  

欢迎广大师生前往!

数学学院

202176