报告题目:Comparison property for amenable group actions
报 告 人:张国华教授(复旦大学)
报告时间:2021年4月8日(星期四)下午15:00-16:00
报告地点:腾讯会议 ID:970890000,会议密码:654321
邀 请 人:马东魁 教授
欢迎广大师生前往!
数学学院
2021年4月6日
报告摘要:
Let a countable discrete group G act on a zero-dimensional compact metric space X. We say that the action admits comparison if for any clopen sets A and B, the condition, that for every G-invariant measure m on X we have the sharp inequality m(A)< m(B), implies that A is subequivalent to B, that is, there exists a finite clopen partition A1, ..., Ak for A, and elements g1, ..., gk in G such that g1(A1), ..., gk(Ak) are disjoint clopen subsets of B. We prove this property for actions of groups whose every finitely generated subgroup has subexponential growth. This is a joint work with Professor Tomasz Downarowicz.
报告人简介:
张国华,国家优青,曾入选全国百篇优秀博士论文,2007年7月博士毕业于中国科学技术大学数学系(现为数学科学学院),2013年起任职复旦大学数学科学学院教授。研究方向是拓扑动力系统,主要研究动力系统的复杂性理论和可数离散群作用动力系统的熵理论。在Memoirs Amer. Math. Soc., J. Reine Angew. Math., Adv. Math., Ergod. Th. Dynam. Systems, J. Mod. Dyn., J. Funct. Anal., J. Differential Equations等国际知名刊物上发表论文30余篇。