•  学术报告

关于举行法国东巴黎大学廖灵敏副教授学术报告会的通知

发布时间:2020-12-25文章来源:华南理工大学数学学院浏览次数:590

报告题目:Uniform random covering problems

报  告  人:廖灵敏  副教授(法国东巴黎大学)

报告时间:20201228日(星期一)下午16:00-17:00 

报告地点:腾讯会议, ID364 269 623 会议密码:654321

邀  请  人:李兵  教授

欢迎广大师生前往!

数学学院

20201225

 

报告摘要:

Motivated by the random covering problem and the study of Dirichlet uniform approximable numbers, we investigate uniform random covering problem. Precisely, we consider an i.i.d sequence $x=(x_n)_{n\geq 1}$ uniformly distributed on the unit circle $\mathbb{T}$ and a decreasing to zero sequence $r=(r_n)_{n\geq 1}$ of positive real numbers. We calculate the size of the random set

\[

\mathcal{U}(x, r):=\{y\in \mathbb{T}: \ \forall N\gg 1,  \ 1\leq \exists n \leq N, \ \text{s.t.} \ \| x_n -y \| < r_N \}.

\]

Some sufficient conditions for $\mathcal{U}(x, r)$ to be almost surely the whole space, of full Lebesgue measure, or countable, are given. In the case that $\mathcal{U}(x, r)$ is a Lebesgue null measure set, we provide some estimations for the upper and lower bounds of Hausdorff dimension. This is a joint work with Henna Koivusalo anf Tomas Persson.