报告题目:Measure theoretic pressure and its applications in dimension theory
报 告 人:赵云 教授(苏州大学)
报告时间:2020年12月14日(星期一)下午14:30-15:30
报告地点:腾讯会议 ID:328 942 088,会议密码:654321
邀 请 人:马东魁 教授
欢迎广大师生前往!
数学学院
2020年12月10日
报告摘要:
In this talk, we define the measure theoretic pressure. This quantity is the free energy if the measure is ergodic, and it is equal to the essential supremum of the free energy of the measures in an ergodic decomposition whenever the measure is only invariant. As an application, we find that the Hausdorff dimension of an invariant measure supported on an average conformal repeller is given by the zero of the measure theoretic pressure of this measure. Furthermore, if a hyperbolic diffeomorphism is average conformal and volume-preserving, the Hausdorff dimension of any invariant measure on the hyperbolic set is equal to the sum of the zeros of measure theoretic pressure restricted to stable and unstable directions.
报告人简介:
赵云, 苏州大学教授、博士生导师,主要研究方向为动力系统与遍历理论。先后主持多项国家自然科学基金,在GAFA, ETDS, JSP, DCDS, Nonlinearity等杂志上发表多篇研究成果。