报告题目:Covering the Sierpinski carpet by tubes
报 告 人:吴猛 副教授(芬兰奥卢大学)
报告时间:2020年12月11日(星期五)下午16:00-17:00
报告地点:腾讯会议, ID:836 147 469 会议密码:654321
邀 请 人:李兵 教授
欢迎广大师生前往!
数学学院
2020年12月4日
报告摘要:
A planar set is called tube-null if it can be covered by a union of tubular neighbourhoods of lines with the sum of their widths arbitrarily small. Such sets arise in the localization problem for the Fourier transform. Any set of finite one-dimensional Hausdorff measure is easily seen to be tube-null, but it is often hard to determine whether a given set of dimension larger than 1 is tube-null or not. In particular, there were very few (non-trivial) examples of tube-null sets of large dimension. I will present our recent result, joint with A. Pyörälä, P. Shmerkin and V. Suomala, that the Sierpinski carpet is tube null. More generally, any times-N invariant set other than the torus is tube-null.
报告人简介:
吴猛,芬兰奥卢大学(University of Oulu)副教授(Associate Professor)。2013年于法国亚眠大学(Universite de Picardie)获得博士学位。他主要从事动力系统与遍历理论,及其在数论和分形几何方面的应用。相关工作发表在Annals Math, Adv. Math.等期刊。最突出成果为证明了 H. Furstenberg 于1969年提出的交集猜测。于2018年获得了芬兰科学院的Academy Research Fellowship (2018-2023年同时受聘为芬兰科学院研究员)。