报告人 | 报告题目 | 报告时间 | 报告地点 |
王治安 教授
香港理工大学 | On the Keller-Segel system with density-dependent motility: global boundedness/asymptotics vs. blowup | 2020年7月15日 10:30-12:00 | 腾讯会议号 127 915 270 |
On the density-suppressed motility model: I. global boundedness and pattern formation | 2020年7月16日 10:30-12:00 | 腾讯会议号 674 347 006 | |
On the density-suppressed motility model: II. traveling waves | 2020年7月17日 10:30-12:00 | 腾讯会议号 709 643 941 |
邀请人:金海洋 副教授
欢迎广大师生前往!
欢迎广
数学学院
2020年 7月 8 日
报告摘要:
The original Keller-Segel system proposed by Keller and Segel in their seminal papers in 1970-1971 is a system where the diffusion and chemotaxis coefficients are density-dependent and intrinsically correlated. Most of mathematical studies in the past were focused on its simplified form by assuming that the diffusion coefficient is constant without considering the correlation between the diffusion and chemotaxis. In this series talks, we shall recall the original Keller-Segel system and report some recent progresses made on its global well-posedness and blowup. Furthermore we shall introduce the density-suppressed motility system which can be regarded a special form of the original Keller-Segel system but has prominent applications in bacterial motion forming the striking strip patterns, and then report some results obtained recently including the global boundedness, pattern formation and traveling waves.
报告人简介:
王治安教授主要研究生物数学中的偏微分方程,目前在JMPA、CPDE、Rev. Mat. Iberoam、SIAM J. Math. Anal.、 SIAM . J. Appl. Math.、M3AS、 JDE 等杂志发表文章60 余篇,获得多项香港研究基金资助, 2019年获得香港数学会杰出青年奖。