报告题目:Core decomposition for Julia sets
报 告 人:杨毅 博士(北京大学)
报告时间:2019年11月15日(星期五)下午14:30-15:30
报告地点:4号楼141室
邀 请 人:李兵 教授
欢迎广大师生前往!
数学学院
2019年11月12日
报告摘要:
This work is mainly concerned with the topology of planar compacta motivated by applications to complex dynamics. Let \mathfrak{M}^{PC}(K) be the collection of all monotone decompositions of a planar compactum K with Peano compacta as their hyperspaces, we show that it has a unique member \mathcal{D}_K^{PC} finer than every other element. The decomposition \mathcal{D}_{K}^{PC} is called the core decomposition of K with Peano hyperspace. Then, for a planar compactum K and a rational function f, the core decomposition of the preimage of K under f is given by pulling back the core decomposition of K.