报告题目:Suitable weak solutions of Beris-Edwards $Q$-tensor system in dimension three
报 告 人:王长友 教授(美国普渡大学)
报告时间:2019年6月24日(星期一)上午10:20-11:20
报告地点:4号楼131室
邀 请 人:温焕尧 教授
欢迎广大师生前往!
数学学院
2019年6月20日
报告摘要:
In this talk, we will introduce a hydrodynamic system, involving using the $Q$-tensors introduced by De Gennes, proposed by Beris and Edwards to model the motion of nematic liquid crystal materials. Mathematically it is a system coupling the Navier-Stokes equation and a parabolic-like system of $Q$-tensors. In dimension three, we show the existence of suitable weak solutions of Beris-Edwards system associated with either Landau-De Gennes polynomial type regular bulk potential or Maire-Saupe (or Ball-Majumdar) singular bulk potential, and then prove its partial smoothness asserting that it is smooth away from a closed set of 1 dimension parabolic Hausdorff measure zero. This is joint with Hengrong Du (Purdue) and Xianpeng Hu (City U of HongKong).
报告人简介:
王长友教授于1996年在美国Rice大学获得博士学位,研究兴趣包括偏微分方程、几何分析等,曾获海外杰青项目资助(杰青B类)以及主持多项美国自然科学基金。获得荣誉包括:Sloan奖,美国数学会Centennial Fellowship,IMA New Directions奖,Simons Fellowship等。