报告题目:Lectures on Brownian Motions Fractal Dimensions
报 告 人:谢南瑞 教授(台湾大学)
报告时间:2019年3月7日(星期四)下午14:30-17:00
报告地点:4号楼4224室
邀 请 人:李兵 教授
欢迎广大师生前往!
数学学院
2019年3月4日
报告摘要:
We begin with the mathematical definition and the stochastic properties of BMs in R^d; d >=1. Then, we discuss two BM path properties; one is common for all d, and one is sharply different for different d = 1; 2; 3. Then, we discuss four random sets defined by a BM path and their fractal dimensions. The goal is to attract the attention to the planar BM paths, of which completely new fractal dimensions results, among others, lead two Fields Medals 2006 and 2010. The references:
1. J.P. Kahane: Some Random Series of Functions, 2nd Edition. CUP 1985.
2. K. Falconer: Foundation on Fractal Geometry. Wiley 1987.
3. G.F. Lawler: Conformally Invariant Processes in the Plane. AMS 2012.
4. P. Morters and Y. Peres: Brownian Motion. CUP 2010.
5. P. Morters: Sample path properties of BM. Berlin Math LNs, 2011.
6. N.-R. Shieh: several published papers related to sample-paths properties.
报告人简介:
谢南瑞教授1987年被评为台湾大学教授,曾在美国纽约大学Courant研究所、美国路易斯安那州立大学、日本京都大学、法国里尔一大等从事研究工作。谢教授是概率论、随机分析、分形几何方面的专家,在该领域权威期刊上发表高质量SCI论文60余篇,包括Ann. Probab.、Probab. Theory Related Fields、Trans. Amer. Math. Soc.、Ann. Inst. Henri Poincaré Probab. Stat.等顶尖杂志。在随机微分方程、布朗运动、随机分形等方面做出不少深刻结果,这些结果被广泛关注和引用,曾获得台湾优等奖与杰出奖等。